Structural-RNN: Deep Learning
on Spatio-Temporal Graphs

Authors: Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena
Speaker: Shuijing Liu
7/2/2020



Introduction

* Deep recurrent neural networks (RNN) are remarkably capable at
modeling sequences, but lack an intuitive spatio-temporal structure

* Spatio-temporal graphs (st-graphs) are good at representing such
spatio-temporal structures
* The nodes represent the problem components, and the edges represent their
spatio-temporal interactions

* This paper develop a general method to transform an arbitrary st-
graph into a mixture of RNNs called structural-RNN(S-RNN) [1]

* It can model the problems comprised of components that interact with each
other in space and time, and is end-to-end trainable



Example problem
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Representation of st-graphs



Formulating problems as st-graphs

(a) We can represent the previous example problem as a st-graph as G =
(V, Es, E7), which consists of:

* Nodesv € V, spatial edges e € &g, and temporal edges e € Er

(b) In the unrolled st-graph, different nodes at the same time t are connected with
spatial edges, and same nodes at adjacent time steps (e.x. t and t + 1) are
connected with temporal edges
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(a) Spatio-temporal graph representing an activity (b) Unrolled through time (c) Factor graph parameterization
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Formulating problems as st-graphs

(c) Given an st-graph and the features of nodes x{ and edges x{, the goal is to predict the node
labels y£, which is affected by both its node and its interactions with other nodes and edges. In the
example problem,

* Node features = human and object poses

* Edge features = the relative positions of human and objects

* Node labels = the human activity and object affordance

Our factor graph has a factor function ¥ (y,, x,,) for each node, and a pairwise factor
Wo(Ve1, Ve, Xe) for each edge. In this way, st-graph factorizes a complicated function into many
simpler functions.
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(b) Unrolled through time (c) Factor graph parameterization



Sharing factors between nodes

e Learning a different set of parameters for each
factor is not scalable if the size of st-graph
becomes larger

* To solve this, semantically similar nodes or
edges can share factors. For example,

* All “object nodes” (blue) in the example can share
the same node factors and parameters

* All human-object edges (black) can share the same
edge factors and parameters (a) Spatio-temporal graph with colors

L. . indicating sharing of factors
* Thus, we divide all nodes and edges into
partitions, Cy; and Cg, where each partition
consists of nodes/edges sharing the same

parameters




From st graphs to structural-RNN



Deriving S-RNN from st-graphs

* We represent each factor with an RNN:
* the RNNs obtained from the node factors are referred as nodeRNNs or Ry,
* the RNNs obtained from edge factors are referred as edgeRNNs or R
* The interactions in st-graph are captured through connections between the nodeRNNs and the
edgeRNNs
* An edgeRNN is connected to a nodeRNN iff the edge and the node are neighbors in the st-
graph
* The nodeRNNs combine the outputs of the edgeRNNs they are connected to
* The predictions of nodeRNNs interact through the edgeRNNs
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Training structural-RNN



Training the S-RNN

* In the forward pass of anode v € V,

* The input into edgeRNN R, is the sequence of edge features xt on the edges
e € E,,, connected to v

 The nodeRNN concatenates the node feature x% and the outputs of edgeRNN
it is connected to, and outputs the prediction label
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P indicating sharing of factors (b) Corresponding S-RNN  (¢) Forward-pass for human node v (d) Forward-pass for object node w




The forward pass

* In the forward pass, we feed the sum of spatial
edge features to the human-object edgeRNN,
R, (black)

* The summation instead of concatenation
allows us to handle variable number of
object nodes without changing the
architecture

* We feed the temporal edge features to the
human-human edgeRNN, Rg, (yellow)

* The nodeRNN Ry, (red) concatenates the human
node features with the outputs from Rg and
R, , and predicts the human’s activity at each
time step
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Applications of structural-RNN



Human motion modeling and forecasting
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Human activity detection and anticipation

 CAD-120 dataset [3] contains activities involve rich human-object
interactions. Each activity consist of a sequence of sub-activities (e.x.
moving, drinking) and objects’ affordance (e.x. reachable, drinkable).

* The authors use S-RNN to detect and anticipate sub-activities and
affordance (left figure). Qualitative results are in right figure.
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