
Robust Adversarial 
Reinforcement Learning 

Explained

Shuijing Liu
3/11/2019



Overview of RARL



Motivation

• Challenges in deep RL for real-world policy learning:
• Due to scarcity of data, training is often restricted to a limited set of scenarios, which 

causes overfitting

• If we learn a policy in simulator and transfer it to the real world, the gap between 
simulator and the real world may cause unsuccessful transfer, if the policy is not robust 
enough

• Training more robust policies using less data:
• The gap between simulations and real-world can be viewed as external 

forces/disturbances in the system

• The adversary disturbance can be learned and reinforced to impede the agent from 
achieving its goal



Adversary disturbance examples

https://gym.openai.com/envs/#mujoco

https://gym.openai.com/envs/#mujoco


Background



Markov decision process

• A Markov decision process (MDP) consists of:

• 𝑆 = {𝑠1, … , 𝑠𝑛}: a finite set of states

• 𝐴 = {𝑎1, … , 𝑎𝑚}: a finite set of actions

• 𝑃(𝑠′|𝑠, 𝑎): the probability that if the agent 
takes action 𝑎 in state 𝑠 at time 𝑡, it will end 
up in state 𝑠′ at time 𝑡 + 1

• 𝑅(𝑠, 𝑎): the immediate reward received 
after taking action 𝑎 at state 𝑠



Reinforcement Learning

• The agent doesn’t know transition probability or reward 

function

• The agent’s action selection is called policy 𝜋:

ቊ
𝑛𝑜𝑛 − 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑝𝑜𝑙𝑖𝑐𝑦: 𝑎𝑡 ≔ 𝜋(𝑠𝑡)

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑠𝑡𝑖𝑐 𝑝𝑜𝑙𝑖𝑐𝑦: 𝜋 𝑎 𝑠 = 𝑝(𝑎𝑡 = 𝑎|𝑠𝑡 = 𝑠)

• Value function 𝑉𝜋(𝑠) is defined as the expected return 

starting with state s and following policy 𝜋:

𝑉𝜋 𝑠 = 𝐸[σ𝑡=0
∞ 𝛾𝑡𝑟(𝑠, 𝑎)|𝑠0 = 𝑠]

• We want to find a policy with maximum expected long-term 

reward 𝑅 = σ𝑡=0
∞ 𝛾𝑡𝑟𝑡, where 𝛾 ∈ [0, 1] is the discount rate

• When the state space or state dimensionality is large, Deep 

RL can be used to approximate 𝜋 𝑠



2-player zero-sum games

• In a two-player zero-sum game, player A’s gain is exactly 
balanced by player B’s loss, and player A’s loss is exactly 
balanced by player B’s gain. 

• The MDP of two-player game can be expressed as a tuple 
(𝑆, 𝐴1, 𝐴2, 𝑃, 𝑟, 𝛾, 𝑠0), where

• 𝐴1 and 𝐴2 are the sets of actions player 1(protagonist) and player 
2(antagonist) can take

• 𝑃: 𝑆 × 𝐴1 × 𝐴2 → 𝑅 is the transition probability

• 𝑟: 𝑆 × 𝐴1 × 𝐴2 is the reward function for both players

• If protagonist is playing strategy 𝜇 and antagonist is playing 
strategy 𝑣, the reward function is 

𝑟𝜇,𝑣 = 𝐸𝑎1~𝜇 𝑠 ,𝑎2~𝑣(𝑠)[𝑟(𝑠, 𝑎
1, 𝑎2)]

• A zero-sum two-player game can be seen as protagonist 
maximizing the long term 𝛾 discounted reward while 
antagonist is minimizing it.



RARL Formulation



Problem Formulation of RARL

• At every time step 𝑡, both players observe the state 𝑠𝑡 and take actions 𝑎𝑡
1~𝜇(𝑠𝑡) and 𝑎𝑡

2~𝑣(𝑠𝑡), 
respectively

• The state transition 𝑠𝑡+1 = 𝑃(𝑠𝑡 , 𝑎𝑡
1, 𝑎𝑡

2) and reward 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡
1, 𝑎𝑡

2) is observed from the 
environment

• In our zero-sum game, the protagonist gets a reward 𝑟𝑡
1 = 𝑟𝑡 while the adversary get a reward 𝑟𝑡

2 =
− 𝑟𝑡

• Therefore, the MDP can be represented as (𝑠𝑡 , 𝑎𝑡
1, 𝑎𝑡

2, 𝑟𝑡
1, 𝑟𝑡

2, 𝑠𝑡+1)

• The protagonist tries to maximize the reward function 

𝑅1 = 𝐸𝑠0~𝜌,𝑎1~𝜇 𝑠 ,𝑎2~𝑣(𝑠)[෍
𝑡=0

𝑇−1

𝑟(𝑠, 𝑎1, 𝑎2)]

• The Nash equilibrium for this game is 𝑅1∗ = min
𝑣

max
𝜇

𝑅1 𝜇, 𝑣 = max
𝜇

min
𝑣

𝑅1(𝜇, 𝑣) (i.e. minimizing 

one's own maximum loss, and maximizing one's own minimum gain)



The Algorithm

• RARL algorithm optimizes both 
agents’ policies alternatively: 
• In the first phase, protagonist 

learns a policy while holding the 
adversary’s policy fixed

• Next, the protagonist’s policy is 
fixed and the adversary’s policy is 
learned

• Repeat these two phases until 
convergence



Evaluation and Results

The robustness of RARL policies were compared against baseline policies:



Video demonstrations

• https://www.youtube.com/watch?v=esxUd4tP2G8

• Some results from my previous work

https://www.youtube.com/watch?v=esxUd4tP2G8

