Robust Adversarial
Reinforcement Learning
Explained

Shuijing Liu

3/11/2019







Motivation

. N o \, 25 T PR L ] [
- B oyl Y P2 o P e i e
2

* Challenges in deep RL for real-world policy learning:
* Due to scarcity of data, training is often restricted to a limited set of scenarios, which
causes overfitting

* If we learn a policy in simulator and transfer it to the real world, the gap between
simulator and the real world may cause unsuccessful transfer, if the policy is not robust
enough

* Training more robust policies using less data:

* The gap between simulations and real-world can be viewed as external
forces/disturbances in the system

* The adversary disturbance can be learned and reinforced to impede the agent from
achieving its goal



https://gym.openai.com/envs/#mujoco

InvertedPendulum HalfCheetah Swimmer



https://gym.openai.com/envs/#mujoco




Markov decision process

* A Markov decision process (MDP) consists of:
S ={sq, ..., S, }: afinite set of states
« A ={ay,..,a,,}: afinite set of actions
« P(s'|s,a): the probability that if the agent
takes action a in state s at time ¢, it will end
up in state s’ attime (¢t + 1)

* R(s,a): the immediate reward received
after taking action a at state s




Reinforcement Learning

* The agent doesn’t know transition probability or reward Environment

function

State Action
* The agent’s action selection is called policy m:
L . Reward
non — probabilistic policy: a; = m(s;)
probabilistic policy:m(als) = p(a; = a|s; = s)
* Value function V(s) is defined as the expected return _ ,
'mput pos§|ble
starting with state s and following policy m: mege actions

Ve(s) = E[EiZov'r(s, a)lso = s]

* We want to find a policy with maximum expected long-term

reward R = 222, ¥ 1y, where y € [0, 1] is the discount rate

J8U |_INdU [BUORNJOAUOD

* When the state space or state dimensionality is large, Deep

RL can be used to approximate m(s)




2-player zero-sum games

Scissors

* In a two-player zero-sum game, player A’s gain is exactly
balanced by player B’s loss, and player A’s loss is exactly
balanced by player B’s gain.

* The MDP of two-player game can be expressed as a tuple
(5,4,,4,,P,1,y,5y), where

* A, and A, are the sets of actions player 1(protagonist) and player
2(antagonist) can take

e P:SXA; XA, = R isthe transition probability Rock, Papac
* 1:5 X A; X A, is the reward function for both players Schason

Rock Paper Scissors

* |f protagonist is playing strategy u and antagonist is playing
strategy v, the reward function is

Twy = Ea1~u(s),a2~v(s) [ (s, a', az)]

* A zero-sum two-player game can be seen as protagonist
maximizing the long term y discounted reward while
antagonist is minimizing it.

Paper  Rock

Scissors






Problem Formulation of RARL

* At every time step t, both players observe the state s, and take actions a; ~u(s;) and a?~v(s;),
respectively

e The state transition s;,; = P(s;, a;, a?) and reward 1 = 7(s¢, a;, a?) is observed from the
environment

* In our zero-sum game, the protagonist gets a reward 1! = 7, while the adversary get a reward r? =

* Therefore, the MDP can be represented as (s¢, al, aZ, v8, 72, Se+1)

* The protagonist tries to maximize the reward function

T-1

Rl = Eso~p,a1~u(s),a2~v(s) [zt=or(5, al’ aZ)]

* The Nash equilibrium for this game is R* = min max R*(y, v) = maxmin R!(y, v) (i.e. minimizing
v U U v

one's own maximum loss, and maximizing one's own minimum gain)



The Algorithm

RARL algorithm optimizes both
agents’ policies alternatively:

* Inthe first phase, protagonist
learns a policy while holding the
adversary’s policy fixed

* Next, the protagonist’s policy is
fixed and the adversary’s policy is
learned

* Repeat these two phases until
convergence

Algorithm 1 RARL (proposed algorithm)

Input: Environment £; Stochastic policies p and v
Initialize: Learnable parameters 6} for x and 6f for v
for i=1,2,.. Ny, do
0F «— 0%,
for j=1,2,.N, do
{(st, a%“}afz,f‘gz, r2t)} <—roll(5 p!g# Vv s Niraj)
6" + policyOptimizer({(s%, a;*,r}*)}, p, 6%)
end for
0y < 07,
for j=1,2,..N, do
{(s, ag",af?rgi, r2t)} «’rroll(é' ,l,!g! Vov , Niraj)
§” « policyOptimizer({(s¢, a?*,r?")}, v, 6")
end for
end for

Return: 0%, 0%

or iter




Evaluation and Results

The robustness of RARL policies were compared against baseline policies:

HalfCheetah Hopper
HalfCheetah Swimmer 3.0 25
(@]
5000 350 a 45 30
00 o g 8
-] B 250 = s 8
g g ® 589 535
3000/ 200
2000 % 7.5 4.0
100 | | ©
1000 | 5 o0
0 0 9.0 1 4.5
100 200 300 400 500 100 200 300 400 500
lterations lterations 02 035 05 065 0.8 07 085 1.0 115 1.3
Friction coefficient Friction coefficient
Hopper Walker2d . . -
4000 | oppe . 60007 T . . T | 30 . | 25
4.5 3.0

RARL
Mass of torso
[=:]

o
Mass of torso
bl
[4.]

4.0

Py
o

100 200 300 400 500 100 200 300 400 500 9.0 45
Iterations Iterations

Base"ne (TRPO) RARL 0% OIErsiction%gefﬁcienﬁ?s e o7 OIEgclion ‘cigeﬂi0|;ﬁ:5 "
| Ea—— |

2000 3200 4000 4800 B000 400 1800 2000 2800 3800




Video demonstrations

* https://www.youtube.com/watch?v=esxUd4tP2G8
* Some results from my previous work

Robust Deep Reinforcement Learning
with Adversarial Attacks



https://www.youtube.com/watch?v=esxUd4tP2G8

