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Introduction
• With the rapid growth of machine intelligence, an increasing number of 

robots are entering everyday applications [1]

• When mobile robots share the living space with people, they need to 
navigate in places crowded with moving people and other agents, and they 
must achieve and balance the following requirements:
• Safety
• Speed
• Behaviors are consistent with social norms



Problem scope

• We focus on solving the decentralized, non-communicating crowd 
navigation problem
• In real-life navigation scenarios, it is difficult to establish explicit 

communication channels between the robot and pedestrians

• We can only control the robot but not other agents in the same environment

• We don’t have full observability of other agents, such as their intended goals

• The environment is not static or stationary
• the robot’s actions and humans’ actions have mutual influence on each other

• We need to train the robot so that it can make appropriate decisions in this 
dynamic environment



MDP formulation

• We formulate the robot’s decision making in a crowd navigation 
environment as a Markov Decision Process (MDP), defined by the tuple 
(𝒮,𝒜, 𝑃, 𝑅, 𝛾):
• State space 𝒮: 𝑠𝑡 = 𝑠𝑟𝑜𝑏𝑜𝑡 , 𝑠ℎ𝑢𝑚𝑎𝑛𝑠 , where

• 𝑠𝑟𝑜𝑏𝑜𝑡 contains both the observable state (position, velocity, radius) and the hidden state 
(goal position, preferred speed, heading angle) of the robot

• 𝑠ℎ𝑢𝑚𝑎𝑛𝑠 contains only the observable state of all humans in the environment
• Action space 𝒜: 𝑎𝑡 = [𝑣𝑥 , 𝑣𝑦] is the robot’s horizontal and vertical speed
• State transition probabilities 𝑃(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)
• Reward function 𝑅 (Appendix 1):

• Award the robot if it reaches the goal
• Penalize the robot if collision happens,  or if it gets too close to a human
• Equals to 0 otherwise

• Discount factor 𝛾



MDP formulation

• At each timestep 𝑡, the agent takes an action 𝑎𝑡 ∈ 𝒜 in its state 𝑠𝑡 ∈
𝒮 according to its policy 𝜋(𝑎𝑡|𝑠𝑡)

• The goal of the agent is to maximize the total accumulated return:

𝑅𝑡𝑜𝑡𝑎𝑙 =
𝑡=0

𝑇

𝛾𝑡𝑟𝑡

• The value of state 𝑠 under policy 𝜋 is the expected return if the agent 
follows 𝜋 from state 𝑠:

𝑉𝜋 𝑠 = 𝔼[𝑅𝑡𝑜𝑡𝑎𝑙|𝑠𝑡 = 𝑠]



Environment

• The environment contains one ego-
robot (yellow) and several people 
(numbered from 0 to 4)

• We model all agents as circles in a 2D 
plane to save computation

• The goal of the robot is to navigate to a 
predefined destination as quickly as 
possible without colliding with other 
people

• We use a reaction-based navigation 
policy called ORCA to control the 
people 



Previous works

• (Traditional method) Reciprocal n-body collision avoidance (ORCA) [2] 
is a reaction-based algorithm that
• Models other agents as velocity obstacles 
• Then plans a new velocity for the ego-agent within the set of permitted 

velocity

• (Learning-based method) A series of algorithms started from CADRL 
[3]-[7] have used neural networks to approximate the value function 
• They first initialize the network using imitation learning with ORCA as the 

demonstration policy
• Then they fine-tune the network using Deep Q-Learning, except that they fit a 

value network instead of Q network
• They retrieve policy from the trained value network using one-step lookahead

(More details in Appendix 2)



Problems of previous works

• These methods assume that the robot 
knows the dynamics of all agents, which is 
unrealistic in real life 

• Since the robot policy only depends on the 
current joint state, it sometimes exhibits 
shortsighted behaviors
• For example, the robot always avoids collision in 

the last minute, which is dangerous and may 
cause discomfort to humans

• These methods need precise measurements 
of state parameters (agents’ position, 
velocity, etc), which is expensive and slow



Our contributions

• To remove the assumption about agents’ dynamics, we propose to 
use direct policy search instead of planning by value function
• We use a model-free policy gradient algorithm, Proximal Policy Optimization 

(PPO) to learn a navigation policy [8]

• To encourage actions that benefit in the long term, we use Long 
Short-term Memory (LSTM) network to incorporate past states into 
the robot’s decision maker [9]
• LSTM makes the robot more proactive and be able to produce socially-aware 

behaviors



Simulation results

CADRL Ours

In our model, the robot is slower, but safer 
and more socially aware



Future work

In next step, we are continuing this work in the following ways:
• Make our pipeline work under noisy state measurements or even with less 

state information to reduce the cost and improve real-time efficiency 

• Add more heterogeneous human behaviors to our environment

• Transfer the simulated policy to a real TurtleBot2 
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Appendices



Reward function

• The reward function awards the robot for reaching its goal, and 
penalizes the robot for colliding with humans or getting too close to 
humans:

where 𝑑𝑚𝑖𝑛 is the minimum separation distance between the robot 
and any human at time 𝑡



More literature review

• Communication-based methods
• Centralized path planning
• Distributed algorithms based on message-passing
But establishing  communication channels in crowd navigation is impossible

• Reaction-based methods
• RVO/ORCA
“Freezing robot problem”/shortsighted or unnatural behaviors

• Trajectory-based methods
• Predict other agent’s intent and then plan a safe path
But predictions are computationally expensive, and stochasticity of other 
agents makes the prediction harder



CADRL algorithm

• Assume 𝑃(⋅ |𝑠𝑡 , 𝑎𝑡) is known, then if we have the optimal value 
function of each state:

𝑉∗ 𝑠𝑡 = 𝔼[σ𝜏=𝑡
𝑇 𝛾𝑡 ⋅ 𝑅 𝑠𝜏, 𝜋

∗ 𝑠𝜏 𝑠0 = 𝑠

• We will be able to retrieve the optimal policy from the value function:

𝜋∗ 𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑅 𝑠, 𝑎 + 𝛾
𝑠′∈𝒮

𝑃 𝑠𝜏+1 𝑠𝜏, 𝑎 𝑉∗ 𝑠′



Our network architecture
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