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Robots that serve humans
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Isolation between robots and humans

Video credits:
https://www.amazon.science/latest-news/robin-deals-with-a-world-
where-things-are-changing-all-around-it
https://www.youtube.com/watch?v=fn3KWM1kuAw
https://www.youtube.com/watch?v=KhDEEN4gcpl 2
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Motivation

- Goal: Enable autonomous navigation in real human environments

Photo credits: https://www.youtube.com/watch?v=MhqtVoVIuRs; https://www.urdesignmag.com/technoloqy/2019/03/01/fedex-sameday-bot;

https://incubees.com/get-ready-for-in-house-robots
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Motivation

- Goal: Enable autonomous navigation in real human environments

« Challenge: It is difficult to infer the way that agents influence each other,
making the interactive environments harder to navigate

« Steps to take:
« Understand the interactive behaviors of agents in the environment

« Learn safe but not overly conservative navigation strategies

| TEMPE || @ I 5|
== ) w|
ARIZONA |

[ SPORTS | [CURRENTS| PRESCOTT: CLEAR (- 33° HEAT INDEX:34° [m 53° j
/

Photo credits: https://ideas.4brad.com/uber-robocar-hits-and-Kkills-pedestrian-Arizona, https://www.youtube.com/watch?v=nDmUyxjdCOS8,
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https://www.realsimple.com/shopping/amazon-post-prime-day-irobot-roomba-692-robot-vacuum-deal-2022
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Overview of our approach

Uncover the Design a Improve robot
structures of structured network navigation in
Interactive scenes to train the robot Interactive scenes




Key Insights

By uncovering the structures beneath the interactive behaviors of
agents, we can improve the robot navigation in interactive

environments.
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Contributions

 Driver internal state inference for navigation in a
structured environment [ICRA 22]

« Unsupervised driving style representation learning
« RL framework for ego car navigation

* Intention-aware graph interaction model for
unstructured crowd navigation [ICRA 21, ICRA 23
under review]

« Spatio-temporal graphs to model crowd interactions
« RL navigation framework combined with prediction

« General crowd navigation for large-scale deployment
[In progress]
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Introduction

« Task: The must merge into the upper lane of the T-
Intersection while other drivers with different driving styles are present

» Challenge for trait inference: Trait labels are hard to obtain = supervised
learning Is not ideal [Ma et al. 2021]

« Contributions:
« Unsupervised driver trait representation learning with variational autoencoder
« Navigation policy through an uncontrolled T-intersection with the learned trait

representation
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The simulated T-intersection environment
in left-handed traffic. 9




Step 1: Tralt representation learning
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Simulation setting

The observed drivers are aggressive or conservative

» Aggressive drivers: higher desired velocity, smaller desired front gap,
will not yield

« Conservative drivers: lower desired velocity, larger desired front gap,
will yield

The simulated T-intersection environment
in left-handed traffic.




Key observations

* The behavior of each car i is only affected by its front car j

= The state of car i at time ¢t is x, = [x}, x!]
« For a driver, the trait is a persistent and long-term property
= Infer traits from a trajectory x = [x4, ... x; ] instead of an instantaneous
state
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The simulated T-intersection environment
in left-handed traffic. 12




Background: Variational Autoencoders (VAE)
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neural network neural network
encoder decoder

loss = ||x-xX]]? + KLI ,N©, D1 = || x-d@) |2 + KL ,N(O, )]

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73 13
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Trait representation learning

- Dataset: a set of trajectories of simulated trajectories {x},

* Network: VAE with a gated recurrent unit (GRU) encoder and an GRU
decoder
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 Training: optimizing the evidence lower bound (ELBO)
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Regularization loss Reconstruction loss




Trait representation results

Qualitative: latent Quantitative: classification
representations of unseen accuracy with a linear SVM
trajectories

-

e  Aggressive
e  Conservative

Method Accuracy

Ours 98.08 %
Morton et al. 60.22%




Step 2: Navigation policy learning
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Trait-aware navigation

« POMDP formulation

« Observable states: positions of the ego driver o, and other drivers oy, ..., 0,
« Hidden states: traits of other drivers from the encoder: z4, ..., z,
 Actions: desired longitudinal velocity of the ego car

: GRU with attention on each human driver
 Training: freeze the encoder, train the with model-free

reinforcement learning (RL)
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The policy network lllustration of attention scores
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Navigation results

* The performance of our method (inferred traits) is
» Close, if not equal, to the oracle policy with true trait labels
* Much better than the baseline policy with no trait inference
The ego car has learned to
« Stop and walit for aggressive cars
* Intercept in front of the first conservative car it observes

True Traits No Traits Inferred Traits
100 - Success 100 - 100
Timeout
Collision
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0.25 0.4 0.6 0.25 0.4 0.6 0.25 0.4 0.6

P(conservative) P(conservative) P(conservative)




Takeaways

* Without access to any labels, we propose an unsupervised
approach to learn a representation of driver internal states from
Interactive trajectories

« With the inferred trait, we learn an adaptive navigation policy
with RL, which can be potentially applied to realistic
uncontrolled intersections

 Limitations and future work:
* The environment is relatively structured and the interactions are simple

= navigation in unstructured interactive environments

« Assumed that each agent has a distinctive trait
= structured model for general multi-agent interactions




 Driver internal state inference for navigation in a
structured environment [ICRA 22]

« Graphical model of interactive agents for crowd
navigation [ICRA 21, ICRA 23 under review, In
progress 22]




Introduction

« Goal: Enable robots to navigate in unstructured interactive
environments.

» Task: The robot must navigate to a goal position without colliding
with or intruding into the intended path of pedestrians.

Real-world crowd navigation




Limitations of previous works

 Fail to consider people’s intentions and different types of interactions,

resulting in shortsighted robot behaviors [Van Den Berg et al. 2011, Chen

et al. 2019]
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Limitations of previous works

 Fail to consider people’s intentions and different types of interactions,
resulting in shortsighted robot behaviors [Van Den Berg et al. 2011, Chen
et al. 2019]

* Prediction based methods does not scale well
» Discrete robot action space [Chen et al. 2020]
« A small set of human intentions [Katyal et al. 2020]
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Contributions

* Model-free RL navigation pipeline that incorporates predicted trajectories
of pedestrians

* Novel network architecture with attention mechanism to capture the spatial
and temporal interactions in the unstructured crowds

« An open-source simulation benchmark, good results in simulation and real
world

Real-world crowd navigation



Intention aware RL framework
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Intention-aware RL

« Given past trajectories, use any trajectory predictor to predict future
trajectories of each pedestrian u;

ﬁ§+1:t+K

* In our MDP, a state includes

= Predictor(u:™™"), ic{1,...,n}
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Past trajectories

 Robot state wt MLl M
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Current state
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Intention-aware RL

Reward function:
« Award(+): if the robot gets closer or arrives at the goal

« Penalty(-): if the robot moves away from the goal, or collides
with the current or future human positions
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Graph network architecture
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Motivation: Spatio-temporal (st) graph

* |In our MDP, a state Includes robot state and the states of all
observed humans

* Question: Besides a simple concatenation, is there a better way
to combine the agents’ states with a more principled approach?

« Our answer: st-graph




Background: Spatio-temporal (st) graph

* Enables spatial and temporal reasoning for problems with inherent
structures [Jain et al. 2016]

* Possible to add attention to model different importance of each edge
[Vemula et al. 2018]




Spatio-temporal interaction graph

Formulate the crowd navigation scenario as an st-graph:
 robot-human (RH) spatial edges

 human-human (HH) spatial edges

e temporal edge




Robot policy network architecture

« Use separate attention networks to represent RH and HH interactions
« HH attention: weights the features of each human w.r.t. other humans
* RH attention: weights the features of each human again w.r.t. the robot

« Use GRU to represent the temporal function
 Train the policy network (non-shaded part) with RL
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Simulator

OpenAl gym environment:

* Empty circles: A variable number of
numans are controlled by reaction-
pased policies such as ORCA

 Randomized starting and goal
nositions for robot and humans

 Solid yellow circle: Robot with a
limited field of view
* Blue humans: detectable
 Red humans: undetectable

Code link: https://github.com/Shuijing725/CrowdNav  DSRNN

y(m)
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Robot
* Goal



https://github.com/Shuijing725/CrowdNav_DSRNN

Simulation experiments

 Baselines and variants

* Previous crowd navigation works:

« Reaction-based: ORCA [Van Den Berg et al. 2011], Social force (SF) [Helbing et
al. 1995],

 RL: DS-RNN [Liu and Chang et al. 2021]

» Choice of trajectory predictor: constant velocity model (const vel),
Gumbel Social Transformer (GST) [Huang et al. 2022]

 Ablations: No prediction (no pred), no HH attention (no HH attn)

 Evaluation metrics
* Navigation metrics: success rate, navigation time, path length
« Social metrics: portion of intrusions, social distance during intrusions

<4




Results: Effectiveness of interaction models

e Methods that models both RH and HH interactions > methods with
only RH interactions

Navigation metrics
l \

Method SRT NTJ| PL| ITR| SDt

ORCA 78.0 1587 1853 26.04 0.36
SF 340 1995 17.75 2135 0.35
DS-RNN 67.0 20.06 2542 1331 0.37
Ours (No pred, HH attn) 82.0 19.15 22.82

Ours (GST, no HH attn)  82.0 1421 1935 722 040
Ours (Const vel, HH attn)  94.0 18.26  23.98 4.49 0.43
| Ours (GST, HH attn) 940 17.64 2251 3.06 0.43]

Ours (Oracle, HH attn) 940 1538 21.23 2.97 0.45




Results: Effectiveness of predictions

* Methods with predictions > methods without predictions

Navigation metrics

l \

Method SRT NTJ| PL| ITR| SDt
ORCA 78.0 15.87 1853 26.04 0.36
SF 340 1995 17.75 2135 0.35
DS-RNN 67.0 20.06 2542 1331 0.37

Ours (No pred, HH attn) 82.0 19.15 2282 1487 0.37

Ours (GST, no HH attn) 820 1421 1935 7.22 040
_ o Ours (Const vel, HH attn) 94.0  18.26  23.98 4.49 0.43
With prediction Ours (GST, HH attn) 940 17.64 2251 3.06 043

Ours (Oracle, HH attn) 940 1538 21.23 2.97 0.45




Qualitative results

Simulation experiments

Non-randomized human scenario

Red star: robot goal
Yellow circle: robot

Blue circles: detectable
humans

Red circles:
undetectable humans

Set of gray circles: true
future human positions

Set of orange circles:
predicted human
positions




Real world experiments

Real-world experiments

Human detection with 2D
LIDAR [Jia et al. 2020]

Robot localization with a
tracking camera

All sensors are on-board

1-4 humans in a 5m x 5m
indoor space

15 successes out of 18
trials (success rate =
83.3%)

Failure cases: robot
collides with walls

“6




Takeaways

* Proposed a method to incorporate trajectory prediction of other
agents into RL framework for interactive navigation

= Intention-aware and proactive robot

* Proposed spatio-temporal graphs to model the heterogeneous
Interactions in unstructured crowd navigation scenario

= A novel network architecture that learns a better policy
e Limitations:
 Cannot handle the environmental constraints and static obstacles in a

scalable way

* Training RL from scratch is computationally expensive




Remaining work

Combine RL method with existing approaches to obtain a crowd
navigation policy that can be deployed in real environments




Navigation in constrained environments

* Previous path planners work well for mostly static environment, but have
limitations in crowded environments [Fox et al. 1997]

 Our method: Include the static obstacles and constraints into the st-
Interaction graph

« Base goal: Assume the
environment is mapped,
use the positions of
objects as input

« Stretch goal: Use raw
sensor signals as inputs
for unmapped navigation

lllustrations of concept PyBullet simulator of crowd

[Pérez D'Arpino et al. 2021] navigation with constraints 6
41 6




Improve training efficiency of RL

* Learning an RL policy from scratch might not be affordable

Training cost of different proposed networks

Task

Input

# of PPO training
steps

T-intersection Car positions 10 x 10°
Pedestrian crowd | Human positions 20 x 10°
Raw LiDAR scans 30 x 10°

« Take advantage of existing navigation methods to improve the

data efficiency of RL

« Base goal: Imitation learning as a warmup for RL [Chen et al. 2019]
« Stretch goal: Residual policy learning [Johannink et al. 2019]




Closing remarks

* Interactive scenarios usually have
underlaying structures

* A suitable choice of interaction model leads to
better robot navigation

* \We developed methods and tools for
navigation with
 Prediction of individual agent characteristics
« Graph model of collective agent behaviors

* Proposed next step:

« Improve the training efficiency and generalization
of our model for large-scale deployment
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Appendix A

Driver trait inference for AV navigation




Simulation settings

 Other drivers are controlled by IDM
« Aggressive: front gap [0.3, 0.5]m, desired speed 2.4m/s
« Conservative: front gap [0.5, 0.7]m, desired speed 3m/s

* Ego car has a fixed path, the desired speed of longitudinal PD
controller is provided by RL network

« Reward function:

(2.5; it s € Sgoa,l
r(s,a) =< —2, if s € Stail

Tspeed(S) + Tstep, OtherWise.

where 7g,eeq = 0.05 X |veg0| is a small reward on the speed of the ego car, and
Tstep = —0.0013 Is a constant penalty that encourages the ego car to finish as soon as.

possible “




Trait representation learning — Data collection

* How: run the simulator without the ego car, record the
trajectories of all IDM venhicles

e State definition:

« At each timestep t, the observable state of each car is xt =
(Apx, Apy r), Where Ap, Is the horizontal offset from its starting position,
and Ap, r Is the horizontal displacement of the car from its front car

* Removed the features that are not useful for trait inference:
 The lateral states
 The direction information

* Size of dataset: 69600 trajectories, train/test split = 2:1




Appendix B

Robot crowd navigation with spatio-temporal graph




Reward function

Reward function:
10, if s; € Syoal

r(st,a¢) =  Tes =-20 if sy € Stair

rpot(st) + Tp'red(st) otherwise.

* Prediction reward r, pred discourages the robot from intruding into the predlcted
human positions: (1;** indicates whether the robot collides with human i at time

t+ k)
; - : t+k T'c
Tprea(st) =, min (1! ) PR
T;U’r’ed(S t) — Z:I?’ln’ T;t.)red( ) I'm/ Qu I” / ) . / Q \‘/
* Potential reward r,,; guides the
robot to approach the goal ©0) 9
_ t t—1 [t | < o~ S
Trot = 2A=dyour + dgont) Q
where dgoaz IS the L2 distance between the (a) Previous methods 7 (b) Ours 6
robot and its goal




RH and HH attention networks

« Scaled dot-product attention [Vaswani et al. 2017]:

-
Attn(Q, K, V') = softmax (Qj% ) %

« HH attention:

t i+ K tt+ KT Q@
Quu = u vy Uy . WHH

t  rtid+K tt K1 T K
Ky = [uj yeeey Uy | " Wiy

t tt+K tt+- K1 TyarV
Virg = u, g eeey Uy Won

 RH attention: if v}, is the output embeddings from HH attention

t ot @ t St K t .t wV 6
Qrr = VuaWgry, Krg =W Wgry, Ve = @’HHWRH_ “
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