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Robots that serve humans

Isolation between robots and humans

Video credits:

https://www.amazon.science/latest-news/robin-deals-with-a-world-

where-things-are-changing-all-around-it

https://www.youtube.com/watch?v=fn3KWM1kuAw

https://www.youtube.com/watch?v=KhDEEN4gcpI 2

https://www.amazon.science/latest-news/robin-deals-with-a-world-where-things-are-changing-all-around-it
https://www.youtube.com/watch?v=fn3KWM1kuAw
https://www.youtube.com/watch?v=KhDEEN4gcpI


Motivation
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Photo credits: https://www.youtube.com/watch?v=MhqtVoVIuRs; https://www.urdesignmag.com/technology/2019/03/01/fedex-sameday-bot; 

https://incubees.com/get-ready-for-in-house-robots

• Goal: Enable autonomous navigation in real human environments

https://www.youtube.com/watch?v=MhqtVoVIuRs
https://www.urdesignmag.com/technology/2019/03/01/fedex-sameday-bot
https://incubees.com/get-ready-for-in-house-robots


Motivation
• Goal: Enable autonomous navigation in real human environments

• Challenge: It is difficult to infer the way that agents influence each other, 
making the interactive environments harder to navigate

• Steps to take:

• Understand the interactive behaviors of agents in the environment

• Learn safe but not overly conservative navigation strategies
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Photo credits: https://ideas.4brad.com/uber-robocar-hits-and-kills-pedestrian-Arizona, https://www.youtube.com/watch?v=nDmUyxjdCO8, 

https://www.realsimple.com/shopping/amazon-post-prime-day-irobot-roomba-692-robot-vacuum-deal-2022

https://ideas.4brad.com/uber-robocar-hits-and-kills-pedestrian-Arizona
https://www.youtube.com/watch?v=nDmUyxjdCO8
https://www.realsimple.com/shopping/amazon-post-prime-day-irobot-roomba-692-robot-vacuum-deal-2022


Overview of our approach

Uncover the 
structures of 

interactive scenes

Design a 
structured network 
to train the robot

Improve robot 
navigation in 

interactive scenes
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Key insights

By uncovering the structures beneath the interactive behaviors of 
agents, we can improve the robot navigation in interactive 
environments.
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Contributions

• Driver internal state inference for navigation in a 
structured environment [ICRA `22]

• Unsupervised driving style representation learning

• RL framework for ego car navigation

• Intention-aware graph interaction model for 
unstructured crowd navigation [ICRA `21, ICRA `23 
under review]

• Spatio-temporal graphs to model crowd interactions

• RL navigation framework combined with prediction

• General crowd navigation for large-scale deployment 
[In progress] 
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• Driver internal state inference for navigation in a 
structured environment [ICRA `22]

• Graphical model of interactive agents for crowd 
navigation [ICRA `21, ICRA `23 under review, In 
progress `22]
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Introduction
• Task: The yellow ego car must merge into the upper lane of the T-

intersection while other drivers with different driving styles are present

• Challenge for trait inference: Trait labels are hard to obtain ⇒ supervised 
learning is not ideal [Ma et al. 2021]

• Contributions:
• Unsupervised driver trait representation learning with variational autoencoder

• Navigation policy through an uncontrolled T-intersection with the learned trait 
representation
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The simulated T-intersection environment 

in left-handed traffic.



Step 1: Trait representation learning
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Simulation setting

The observed drivers are aggressive or conservative
• Aggressive drivers: higher desired velocity, smaller desired front gap, 

will not yield

• Conservative drivers: lower desired velocity, larger desired front gap, 
will yield
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The simulated T-intersection environment 

in left-handed traffic.



Key observations

• The behavior of each car 𝑖 is only affected by its front car 𝑗

⇒ The state of car 𝑖 at time 𝑡 is 𝑥𝑡 = [𝑥𝑡
𝑖 , 𝑥𝑡

𝑗
]

• For a driver, the trait is a persistent and long-term property

⇒ Infer traits from a trajectory 𝒙 = 𝑥1, … 𝑥𝐿 instead of an instantaneous     

state
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The simulated T-intersection environment 

in left-handed traffic.
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Background: Variational Autoencoders (VAE)

13https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Trait representation learning

• Dataset: a set of trajectories of simulated trajectories 𝒙 𝑖=1
𝑁

• Network: VAE with a gated recurrent unit (GRU) encoder and an GRU 
decoder 

• Training: optimizing the evidence lower bound (ELBO)
ℒ = 𝛽𝐷𝐾𝐿(𝒩 𝜇, 𝜎 ||𝒩(0, 𝐼)) + 𝒙 − ෝ𝒙

2
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Regularization loss Reconstruction loss 



Trait representation results

Qualitative: latent 
representations of unseen 
trajectories

Quantitative: classification 
accuracy with a linear SVM
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Step 2: Navigation policy learning  
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Trait-aware navigation

• POMDP formulation

• Observable states: positions of the ego driver 𝑜0 and other drivers 𝑜1, … , 𝑜𝑛
• Hidden states: traits of other drivers from the encoder: 𝑧1, … , 𝑧𝑛
• Actions: desired longitudinal velocity of the ego car

• Policy network: GRU with attention on each human driver

• Training: freeze the encoder, train the policy network with model-free 
reinforcement learning (RL)
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The policy network Illustration of attention scores

0.1

0.3 0.05 0.05

0.5



Navigation results

• The performance of our method (inferred traits) is 
• Close, if not equal, to the oracle policy with true trait labels
• Much better than the baseline policy with no trait inference

• The ego car has learned to
• Stop and wait for aggressive cars
• Intercept in front of the first conservative car it observes 
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An example episode

True Traits No Traits Inferred Traits



Takeaways

• Without access to any labels, we propose an unsupervised 
approach to learn a representation of driver internal states from 
interactive trajectories

• With the inferred trait, we learn an adaptive navigation policy 
with RL, which can be potentially applied to realistic 
uncontrolled intersections

• Limitations and future work:
• The environment is relatively structured and the interactions are simple 

⇒ navigation in unstructured interactive environments

• Assumed that each agent has a distinctive trait

⇒ structured model for general multi-agent interactions
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• Driver internal state inference for navigation in a 
structured environment [ICRA `22]

• Graphical model of interactive agents for crowd 
navigation [ICRA `21, ICRA `23 under review, In 
progress `22]
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Introduction

• Goal: Enable robots to navigate in unstructured interactive 
environments.

• Task: The robot must navigate to a goal position without colliding 
with or intruding into the intended path of pedestrians.
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Real-world crowd navigation



Limitations of previous works
• Fail to consider people’s intentions and different types of interactions, 

resulting in shortsighted robot behaviors [Van Den Berg et al. 2011, Chen 
et al. 2019]

22An example of freezing robot



Limitations of previous works
• Fail to consider people’s intentions and different types of interactions, 

resulting in shortsighted robot behaviors [Van Den Berg et al. 2011, Chen 
et al. 2019]

• Prediction based methods does not scale well 
• Discrete robot action space [Chen et al. 2020]

• A small set of human intentions [Katyal et al. 2020]
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A small, discrete set of human 

intentions [Katyal et al. 2020]

Discrete robot action space



Contributions

• Model-free RL navigation pipeline that incorporates predicted trajectories 
of pedestrians 

• Novel network architecture with attention mechanism to capture the spatial 
and temporal interactions in the unstructured crowds

• An open-source simulation benchmark, good results in simulation and real 
world
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Real-world crowd navigation



Intention aware RL framework
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Intention-aware RL

• Given past trajectories, use any trajectory predictor to predict future 
trajectories of each pedestrian 𝑢𝑖

• In our MDP, a state includes

26

• Robot state 𝒘𝑡

• Human current and future states 
𝒖1
𝑡 , ෝ𝒖1

𝑡+1:𝑡+𝐾 , … , 𝒖𝑛
𝑡 , ෝ𝒖𝑛

𝑡+1:𝑡+𝐾

• Action 𝑎𝑡 = [𝑣𝑥 , 𝑣𝑦] of the robot

• Assume the state transition probability 

𝒫(⋅ |𝑠𝑡 , 𝑎𝑡) is unknown

Past trajectories

Current state

Predicted 

future 

trajectories



Intention-aware RL

Reward function:

• Award(+): if the robot gets closer or arrives at the goal

• Penalty(-): if the robot moves away from the goal, or collides 
with the current or future human positions
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Graph network architecture
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Motivation: Spatio-temporal (st) graph

• In our MDP, a state includes robot state and the states of all 
observed humans

• Question: Besides a simple concatenation, is there a better way 
to combine the agents’ states with a more principled approach?

• Our answer: st-graph 
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Background: Spatio-temporal (st) graph

30

• Enables spatial and temporal reasoning for problems with inherent 
structures [Jain et al. 2016]

• Possible to add attention to model different importance of each edge 
[Vemula et al. 2018]



Spatio-temporal interaction graph

Formulate the crowd navigation scenario as an st-graph:

• robot-human (RH) spatial edges

• human-human (HH) spatial edges

• temporal edge
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Robot policy network architecture 

• Use separate attention networks to represent RH and HH interactions
• HH attention: weights the features of each human w.r.t. other humans

• RH attention: weights the features of each human again w.r.t. the robot

• Use GRU to represent the temporal function

• Train the policy network (non-shaded part) with RL 
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Simulator

OpenAI gym environment:

• Empty circles: A variable number of 
humans are controlled by reaction-
based policies such as ORCA

• Randomized starting and goal 
positions for robot and humans

• Solid yellow circle: Robot with a 
limited field of view

• Blue humans: detectable

• Red humans: undetectable
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Code link: https://github.com/Shuijing725/CrowdNav_DSRNN

https://github.com/Shuijing725/CrowdNav_DSRNN


Simulation experiments

• Baselines and variants
• Previous crowd navigation works: 

• Reaction-based: ORCA [Van Den Berg et al. 2011], Social force (SF) [Helbing et 
al. 1995], 

• RL: DS-RNN [Liu and Chang et al. 2021]

• Choice of trajectory predictor: constant velocity model (const vel), 
Gumbel Social Transformer (GST) [Huang et al. 2022] 

• Ablations: No prediction (no pred), no HH attention (no HH attn)

• Evaluation metrics
• Navigation metrics: success rate, navigation time, path length

• Social metrics: portion of intrusions, social distance during intrusions 
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Results: Effectiveness of interaction models

• Methods that models both RH and HH interactions > methods with 
only RH interactions

35

Navigation metrics Social metrics



Results: Effectiveness of predictions

• Methods with predictions > methods without predictions

36

Navigation metrics Social metrics

No prediction

With prediction



Qualitative results

• Red star: robot goal

• Yellow circle: robot

• Blue circles: detectable 
humans

• Red circles: 
undetectable humans

• Set of gray circles: true 
future human positions

• Set of orange circles: 
predicted human 
positions



Real world experiments

• Human detection with 2D 
LiDAR [Jia et al. 2020]

• Robot localization with a 
tracking camera

• All sensors are on-board

• 1-4 humans in a 5m x 5m 
indoor space

• 15 successes out of 18 
trials (success rate ≈
83.3%)

• Failure cases: robot 
collides with walls



Takeaways

• Proposed a method to incorporate trajectory prediction of other 
agents into RL framework for interactive navigation
⇒ Intention-aware and proactive robot

• Proposed spatio-temporal graphs to model the heterogeneous 
interactions in unstructured crowd navigation scenario
⇒ A novel network architecture that learns a better policy

• Limitations: 
• Cannot handle the environmental constraints and static obstacles in a 

scalable way

• Training RL from scratch is computationally expensive
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Remaining work

Combine RL method with existing approaches to obtain a crowd 
navigation policy that can be deployed in real environments
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Navigation in constrained environments 

• Previous path planners work well for mostly static environment, but have 
limitations in crowded environments [Fox et al. 1997]

• Our method: Include the static obstacles and constraints into the st-
interaction graph

41

Illustrations of concept 

[Pérez D'Arpino et al. 2021]

PyBullet simulator of crowd 

navigation with constraints

• Base goal: Assume the 

environment is mapped, 

use the positions of 

objects as input

• Stretch goal: Use raw 

sensor signals as inputs 

for unmapped navigation



Improve training efficiency of RL
• Learning an RL policy from scratch might not be affordable 

• Take advantage of existing navigation methods to improve the 
data efficiency of RL 

• Base goal: Imitation learning as a warmup for RL [Chen et al. 2019]

• Stretch goal: Residual policy learning [Johannink et al. 2019]
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Task Input # of PPO training 

steps

T-intersection Car positions 10 × 106

Pedestrian crowd Human positions 20 × 106

Raw LiDAR scans 30 × 106

Training cost of different proposed networks



Closing remarks

• Interactive scenarios usually have 
underlaying structures

• A suitable choice of interaction model leads to 
better robot navigation

• We developed methods and tools for 
navigation with

• Prediction of individual agent characteristics

• Graph model of collective agent behaviors 

• Proposed next step:
• Improve the training efficiency and generalization 

of our model for large-scale deployment
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Appendix A
Driver trait inference for AV navigation

46



Simulation settings
• Other drivers are controlled by IDM

• Aggressive: front gap [0.3, 0.5]m, desired speed 2.4m/s
• Conservative: front gap [0.5, 0.7]m, desired speed 3m/s

• Ego car has a fixed path, the desired speed of longitudinal PD 
controller is provided by RL network

• Reward function:

where 𝑟𝑠𝑝𝑒𝑒𝑑 = 0.05 × 𝑣𝑒𝑔𝑜
2

is a small reward on the speed of the ego car, and 

𝑟𝑠𝑡𝑒𝑝 = −0.0013 is a constant penalty that encourages the ego car to finish as soon as 
possible

47



Trait representation learning – Data collection

• How: run the simulator without the ego car, record the 
trajectories of all IDM vehicles

• State definition:
• At each timestep 𝑡, the observable state of each car is 𝑥𝑡 =
(Δ𝑝𝑥, Δ𝑝𝑥,𝑓), where Δ𝑝𝑥 is the horizontal offset from its starting position, 
and Δ𝑝𝑥,𝑓 is the horizontal displacement of the car from its front car

• Removed the features that are not useful for trait inference:
• The lateral states

• The direction information

• Size of dataset: 69600 trajectories, train/test split = 2:1
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Appendix B
Robot crowd navigation with spatio-temporal graph
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Reward function
Reward function:

• Prediction reward 𝑟𝑝𝑟𝑒𝑑 discourages the robot from intruding into the predicted 
human positions: (1𝑖

𝑡+𝑘 indicates whether the robot collides with human 𝑖 at time 
𝑡 + 𝑘)

=-20

• Potential reward 𝑟𝑝𝑜𝑡 guides the 

robot to approach the goal

d
where 𝑑𝑔𝑜𝑎𝑙

𝑡 is the L2 distance between the 

robot and its goal



RH and HH attention networks

• Scaled dot-product attention [Vaswani et al. 2017]: 

• HH attention:

• RH attention: if 𝑣𝐻𝐻
𝑡 is the output embeddings from HH attention
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