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OBJECTIVESOBJECTIVES
Robustness of Reinforcement Learning (RL) is critical
for real world applications. We first design adversar-
ial attacks on Deep Reinforcement algorithms (DRL) and
then harness them to improve robustness of DRL.

BACKGROUND AND STATE OF ARTBACKGROUND AND STATE OF ART
• Q Learning (Q): Q learning is a value function based

algorithm.

– The learning agent updates the Q value using the
temporal difference error and simultaneously acts
to maximize its long run return.

– In the deep Q learning algorithm, the agent uses a
Deep Neural Network (DNN) to approximate this
Q function, while in Radial Basis Function(RBF)-
Based Q learning, RBF approximators are used . For
deep learning, the relevant equations are [1]
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• Actor-critic methods: It uses both policy gradient

method as well as value function network [2]

– The action is explicitly expressed by an actor net-
work, and a critic network is used to evaluate the
value function. The agent simultaneously updates
the actor and critic as it acts in real world.

– Underlying function approximator can be DNN
or (RBF). For Deep Deterministic Policy Gradient
(DDPG) [3], the update for actor is

∇θµJ ≈ Est∼ρβ
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• Adversarial Examples:

– [4] have fooled Neural Networks into predicting in-
correct labesl with high confidence through small
perturbations of the input images.

– [5] have used strategy similar to [4] for attacking RL
algorithms that use image input as observation.

– [6] Inject noise only when value function is above a
certain threshold.

• Robust Reinforcement Learning:

– [7] Sample an ensemble of different models and
train on them. Needs runs outside the "simulator".

– [8] Used a heuristic ||u||2 as objective for adversary

– [9] Both adversary and RL agent learn alternatively

– [10] Deep version of [9] using TRPO

METHODOLOGYMETHODOLOGY
• Objective function for adversarial attack:

– DDQN: The cross entropy loss between the ad-
versarial probability distribution and optimal
policy generated by the RL agent

J(s, π∗) = −
n∑
i=1

pilogπ
∗
i

where π∗
i = π∗(ai|s), pi = P (ai), the adversarial

probability distribution P is given by

P (ai) =

{
1, if aw = 1
0, otherwise (1)

– DDPG:

∇sQ∗(s, a) =
∂Q∗

∂s
+
∂Q∗

∂U∗
∂U∗

∂s

• Adversarial Attack:

– Naive sampling

– Gradient based

– Stochastic gradient descent based

• Robust RL through adversarial training:

– Take pre-trained network

– Train again, fool the agent through corrupted
state that forces it to take "bad" action

– Return robust RL
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• Adversarial Attack:

– Naive sampling: Sample noise from nearby
states and use the worst possible noise

– Gradient based: Sample noise along gradient of
the objective function proposed above and re-
turn the worst possible noise

– Stochastic gradient descent based: Use stochas-
tic gradient descent (SGD) for the proposed ob-
jective function

• Robust RL through adversarial training:

– Take pre-trained network

– Train again, fool the agent through corrupted
state that forces it to take "bad" action

Adversarial training and robustness over transitions

η(π, T ) = Eτ [
T∑
t=0

γtr(st, at)|s0, π, T ]

η(π) = ET [η(π, T )]
ηRC(π) = ET [η(π, T )|P(η(π, T ) ≤ β) = α] [11]

RESULTSRESULTS
• Adversarial Attack

(a) DDQN Cart Pole (b) RBF Q Cart Pole (c)DDQN Mountain Car (d) RBF Q Mountain Car
Gradient based (GB) is better than naive sampling (NS) which in turn is better than HSFGM ([5]) and SGD

• Robust RL

(a) DDQN Cartpole (b) Robust DDQN Cartpole (a) DDQN Mountain Car (b) Robust DDQN
Mountain-Car

(a) DDPG Hopper (b) Robust DDPG hopper (a) DDPG Half-Cheetah (b) Robust DDPG Half-
Cheetah

Significant improvement of robustness over a range of model parameters because of robust training.
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