
Supplementary for Robust Deep Reinforcement
Learning with Adversarial Attacks

Anonymous Author(s)
Affiliation
Address
email

3 Proof of Proposition and comment1

Lemma 3.1. The optimal adversarial policy is a stationary and deterministic policy given by2

π∗adv,k(sk) = argmin
s̃k

min
ãk

R(sk) + γE[V ∗(sk+1)|sk, ãk] (1)

where ãk ∈ argmaxa′ R(s̃k) + γE[V ∗(s̃k+1)|s̃k, a′] and ||s̃k − sk|| ∈ ∆s3

Proof.

V ∗πadv,k
(sk) = R(sk) + γE[E[E[V ∗(sk+1)|sk, ak]]] (2)

where the first expectation is over the stochastic adversarial policy, that is, πadv(sadv,k|sk), the4

middle expectation is over the action selected by the RL agent given an adversarially perturbed state,5

that is, ak ∼ π∗(.|sk) = Pd({ak ∈ argmaxa′ R(sadv,k) + γE[V ∗(sadv,k+1)|sadv,k, a′]}) where Pd6

is some arbitrary distribution for agent for breaking tie amongst best actions.7

Thus,8

V ∗πadv,k
(sk) = R(sk) + γE[E[E[V ∗(sk+1)|sk, ãk]]] (3)

where

ãk ∈ argmax
a′

R(sadv,k) + γE[V ∗(sadv,k+1)|sadv,k, a′] (4)

Let9

π∗adv,k(sk) = δ(sadv,k = argmin
s̃k

min
ãk

R(sk) + γE[V ∗(sk+1)|sk, ãk]) (5)

with ãk same as defined in Eq. 4. Thus,10

V ∗π∗adv,k
(sk) = R(sk) + γmin

s̃k
min
ãk

E[V ∗(sk+1)|sk, ãk]

≤ R(sk) + γE[E[E[V ∗(sk+1)|sk, ãk]]] ∀πadv,k
= V ∗πadv,k

(sk) ∀πadv,k (6)

Thus, π∗adv,k as proposed in Eq. 5 is the optimal adversarial attack.11

Proposition 3.2. Given a value function, V , if the fooled agent follows a class of policy (π) given as12

π(s) ∈ argmax
a

R(s) + γE[V (s′)|s, a]

Then under the state perturbation attack, the worst that the agent can do can be given by13

V ∗adv(s) = min
s̃

min
ã
R(s) + γE[V ∗adv(s

′)|s, ã] (7)

where ã ∈ argmaxa′ R(s̃) + γE[V ∗adv(s̃
′)|s̃, a′]14

Submitted to 33rd Conference on Neural Information Processing Systems (NeurIPS 2019). Do not distribute.

Proof. The worst that the agent can do under attack is given by15

V ∗adv(s) = min
π∞adv,0

E[

∞∑
t=0

γtR(st)|s0 = s, aadv,0](at = π(s̃t))

= min
πadv,0

R(s0) + min
π∞adv,1

E[

∞∑
t=1

γtR(st)|s0 = s, aadv,0]

= min
πadv,0

R(s0) + min
π∞adv,1

E[E[

∞∑
t=1

γtR(st)|s1, aadv,1, s0 = s, aadv,0]|s0 = s, aadv,0]

= min
πadv,0

R(s0) + γ min
π∞adv,1

E[E[

∞∑
t=1

γtR(st)|s1, aadv,1]|s0 = s, aadv,0] (Markov property)

= min
πadv,0

R(s0) + γE[V ∗adv(s1)]|s0 = s, aadv,0]

= min
s̃

(s) + γE[V ∗adv(s
′)|s, ã]

with ã ∈ argmaxa′ R(s̃) + γE[V ∗adv(s̃
′)|s̃, a′]16

Proposition 3.3. Let the Q values of optimal policy be given by Q∗(s, a) and π∗(a|s) be conditional17

probability mass function generated as softmax of Q∗(s, a) (with temperature T > 0).18

π∗(a|s) =
e

Q∗(s,a)
T∑n

i=1 e
Q∗(s,a)

T

(8)

Let the action which has maximum pmf(π∗) be given as a∗ and the worst possible action be given by19

aw. Let the adversarial probability distribution be Padv(a) given by20

Padv(a) =

{
1, if a = aw
0, otherwise (9)

Then the objective function whose minimization leads to optimal adversarial attack on RL agent is

J(s) = Div(Padv, π
∗(s))

where Div(Padv, π
∗(s)) is any divergence measure between padv and π21

Proof. Let πadv(s) be the policy followed by proposed adversarial agent for adversarial attack, that
is,

πadv(s) = argmin
s
J(s) = argmin

s
Div(Padv, π

∗(s))

For notational brevity, we define sadv := πadv(s) , then by Gibb’s inequality [4], π∗(a|sadv) = Padv .22

In other words,23

π∗(a|sadv) =

{
1, if a = aw
0, otherwise (10)

Let π∗(a|sadv) be the policy followed by a RL agent fooled by adversarial attack and V ∗πadv
(s) be24

the value function for RL agent corresponding to that policy. Thus,25

V ∗πadv
(s) = Q∗(s, π∗(a|sadv))
≤ Q∗(s, a), ∀a (from Eq. 10)

=⇒ V ∗πadv
(s) = min

a
Q∗(s, a) (11)

Now, using the definition of optimal adversarial attack (π∗adv(s)), we get26

V ∗π∗adv
(s) = min

a
Q∗(s, a)

= V ∗πadv
(s) (using Eq. 11)

≤ max
a

Q∗(s, a) = V ∗(s)

=⇒ V ∗πadv
(s) = V ∗π∗adv

(s) ≤ V ∗(s)

2

Thus, optimization of the proposed objective function leads to optimal adversarial policy.27

28

Comment: The previously proposed adversarial attack [2] is suboptimal with respect to definition of29

adversarial attack on RL agent. We state their proposition and then prove that it is suboptimal. [2]30

Let the Q values of optimal policy be given by Q∗(s, a) and π∗(a|s) be conditional probability mass31

function generated as softmax of Q∗(s, a) (with temperature T > 0).32

π∗(a|s) =
e

Q∗(s,a)
T∑n

i=1 e
Q∗(s,a)

T

(12)

Let the action which has maximum pmf(π∗) be given as a∗ and the worst possible action be given by33

aw. Let the adversarial probability distribution be Padv(a) given by34

Padv(a) =

{
1, if a = a∗

0, otherwise (13)

Then the objective function whose maximization leads to adversarial attack on RL agent is35

J(s) = −
n∑
i=1

Padv(ai)logπ
∗(ai|s) (14)

36

Proof. We prove that the optimization (maximization) of Eq. 14 is suboptimal with respect to the37

definition of "optimal" adversarial attack (Definition 2 in main paper). We show it by providing a38

generic case where the optimization of previously proposed cost function doesn’t necessarily lead to39

adversarial state that cause a reduction in value function for fooled RL agent.40

J(s) = −
n∑
i=1

Padv(ai)logπ
∗(ai|s)

= −logπ∗(a∗|s) (using Eq. 13) (15)
=⇒ J(s)→∞ as π∗(a∗|s)→ 0 (16)

Thus, J(s) attains maximum value when the adversary fools an agent into state sadv such that41

π∗(a∗|s) ≈ 0. It completely disregards the pmf corresponding to actions other than optimal action42

for that state. Let π∗(a|sadv) be the policy followed by a RL agent fooled by adversarial attack and43

V ∗πadv
(s) is the value function for RL agent corresponding to that policy. As we have shown, there44

is complete disregard for pmf corresponding to suboptimal actions. Therefore, we can end up in a45

situation where46

min
a
Q∗(s, a) ≤ Q∗(s, π∗(a|sadv))

= V ∗πadv
(s)

≤ Q∗(s, a∗)

Thus,47

min
a
Q∗(s, a) = V ∗π∗adv

(s) ≤ V ∗πadv
(s)

Since, V ∗π∗adv
(s) ≤ V ∗πadv

(s), we have proved that this attack is suboptimal.48

Proposition 3.4. The proposed Q learning algorithm with finite state space S and action space A49

given by50

Qk+1(s, a) = (1− αk)Qk(s, a) + αk[R(sk) + γmin
s̃′

min
ã′

Qk(s′, ã′)] (17)

where ã′ ∈ argmaxa′ Qk(s̃′, a′) converges w.p. 1 toQ∗(s, a) provided
∑∞
k=0 αk =∞,

∑∞
k=0 α

2
k <51

∞ and all state action pairs (s, a) are explored infinitely often. Here, s′ is the next state that agent52

experiences given that the agent takes action a at state s. The time dependent learning rate is53

αk := αk(s, a) and only the Q value of pair (s, a) that is visited at time instant k is updated.54

3

Proof.

Qk+1(s, a)−Q∗k(s, a) = (1− αk(s, a))(Qk(s, a)−Q∗k(s, a)) + αk(s, a)(R(sk) + γmin
s̃′

min
ã′

Qk(s′, ã′)−Q∗k(s, a))

∆k+1 := (1− αk(s, a))∆k + αk(s, a)(R(sk) + γmin
s̃′

min
ã′

Qk(s′, ã′)−Q∗k(s, a))

Let Fk := R(s) + γmins̃ minã′ Qk(s′, ã′)−Q∗k(s, a) and Fk := {∆k,∆k−1, ..Fk−1, ..., αk−1, ..}55

|E[Fk|Fk]| = |E[R(sk) + γmin
s̃′

min
ã′

Qk(s′, ã′)−Q∗k(s, a)|Fk]|

= |E[R(sk) + γmin
s̃′

min
ã′

Qk(s′, ã′)− E[R(sk) + γmin
s̃′2

min
ã′2

Q∗k(s′, ã′2)]|Fk]|

≤ γE[|Qk(s′, ã1
′∗)−Q∗k(s′, ã2

′∗)||Fk] (where ã∗1, ã
∗
2 are respective optimal sol)

= γE[Qk(s′, ã1
′∗)−Q∗k(s′, ã2

′∗)|Fk] or

γE[Q∗k(s′, ã2
′∗)−Qk(s′, ã1

′∗)|Fk]

≤ γE[Qk(s′, ã2
′∗)−Q∗k(s′, ã2

′∗)|Fk] (as ã∗1 is the optimal sol) or

γE[Q∗k(s′, ã1
′∗)−Qk(s′, ã1

′∗)|Fk] (as ã∗2 is the optimal sol)
≤ γ||Qk −Q∗||∞

|E[Fk|Fk]| ≤ γ||∆k||∞

Now, let M = max{R(s0), ||Q0(s, a)||∞}. Then |Q1(s, a)| ≤ (1 − ε1(s, a))M + ε1(s, a){M +56

γM} = M(1 +γ) or |Q1(s, a)| ≤M(1 +γ), repeating it, we’ll get |Qk(s, a)| ≤M(1 +γ+γ2...+57

γk) ≤ M
1−γ . Thus, Qk(s, a) is bounded. Now,58

V ar[Fk|Fk]

= E[{R(sk) + γmin
s̃

min
ã′

Qk(s′, ã′)−Q∗k(s, a)− E[R(s) + γmin
s̃

min
ã′

Qk(s′, ã′)−Q∗k(s, a)]}2|Fk]

= E[{R(s) + γmin
s̃

min
ã′

Qk(s′, ã′)− E[R(s) + γmin
s̃

min
ã′

Qk(s′, ã′)]}2|Fk]

= V ar[R(s) + γmin
s̃

min
ã′

Qk(s′, ã′)]

≤ L (as Qk(s, a) is finite and R(s, a) is finite random variable)

Now, ||4k||∞ is finite for all k (as Qk(s, a) is always finite). So, given L, there exists C such that59

L ≤ C(1 + ||4k||2∞). This implies V ar[Fk(x)|Fk] ≤ L ≤ C(1 + ||4k||2∞.60

Hence, convergence of stochastic iterative algorithm holds by [3], that is, ∆k := Qk(s, a)−Q∗(s, a)61

converges w.p. 1 to 0 to complete the proof.62

4 Adversarial attacks63

4.1 Gradient based Attack DDQN64

We have outlined the gradient based DDQN attack in Algo. 165

4.2 Gradient based attack on DDPG66

The gradient based attack for DDPG is similar to DDQN with the objective function that adversary67

need to minimize being given by the optimal value function of critic (Q∗(s, a)). Here the gradient is68

given by69

∇sQ∗(s, U) =
∂Q∗

∂s
+
∂Q∗

∂U

∂U

∂s
70

where U(s) represents the policy given by actor. The algorithm has been provided in Algo. 2.71

4.3 Naive attack on DDQN72

We outline the algorithm for Naive adversarial attack on DDQN in Algo. 373

4

Algorithm 1 Gradient based attack (DDQN)

1: procedure GRAD(Qtarget, Q, s, ε, n, α, β) . Gradient based attack function takes
Q network (Q), current state(s), adversarial attack magnitude constraint(ε), parameters of beta
distribution(α, β) and number of times to sample noise(n) as input

2: a∗ ← argmax
a

Q(s, a), Q∗ ← max
a

Qtarget(s, a) . Determine optimal action and value
function

3: πtarget ← softmax(Qtarget) . Pass Q through softmax layer to convert it into pmf
4: grad← ∇sJ(s, πtarget) . Determine the gradient
5: grad_dir ← ∇sJ(s,π

target)
||∇sJ(s,πtarget)|| . l2 constrained norm of gradient

6: for i = 1 : n do . Sample a few times
7: ni ∼ beta(α, β) . Sample noise
8: si ← s− ni ∗ grad_dir. Possible adversarial state determined by sampled noise in the

direction of gradient
9: aadv ← argmax

a
Q(si, a) . Determine optimal action in potential adversarial state

10: Qtargetadv ← Qtarget(s, aadv) . Determine the value of potential adversarial action
corresponding to potential adversarial state for current state

11: if Qtargetadv < Q∗ then . if the potential adversarial state leads to bad action
12: Q∗ ← Qtargetadv . Store the value function of that potential bad action
13: sadv ← si . Store that state as possible adversarial state
14: else
15: do nothing
16: end if
17: end for
18: return sadv . Return adversarial state
19: end procedure

Algorithm 2 Gradient based attack (DDPG)

1: procedure GRAD(Qtarget, U, s, ε, n, α, β) . Gradient
based attack function takes target Q network (critic) Qtarget , actor network U , current state(s),
adversarial attack magnitude constraint(ε), parameters of beta distribution(α, β) and number of
times to sample noise(n) as input

2: a∗ ← U(s), Q∗ ← Qtarget(s, a∗) . Determine optimal action and value function
3: grad← ∇sQtarget(s, a) . Determine the gradient
4: grad_dir ← ∇sQ

target(s,a)
||∇sQtarget(s,a)|| . l2 constrained norm of gradient

5: for i = 1 : n do . Sample a few times
6: ni ∼ beta(α, β) . Sample noise
7: si ← s− ni ∗ grad_dir. Possible adversarial state determined by sampled noise in the

direction of gradient
8: aadv ← U(si) . Determine optimal action in potential adversarial state
9: Qtargetadv ← Qtarget(s, aadv) . Determine the value of potential adversarial action

corresponding to potential adversarial state for current state
10: if Qtargetadv < Q∗ then . if the potential adversarial state leads to bad action
11: Q∗ ← Qtargetadv . Store the value function of that potential bad action
12: sadv ← si . Store that state as possible adversarial state
13: else
14: do nothing
15: end if
16: end for
17: return sadv . Return adversarial state
18: end procedure

5

Algorithm 3 Naive attack (DDQN)

1: procedure NAIVE(Qtarget, Q, s, ε, n, α, β) . Naive attack function takes Q network (Q),
current state(s), adversarial attack magnitude constraint(ε), parameters of beta distribution(α, β)
and number of times to sample noise(n) as input

2: a∗ ← argmax
a

Q(s, a), Q∗ ← max
a

Qtarget(s, a). Determine optimal action value function
3: for i = 1 : n do . Sample a few times
4: ni ∼ beta(α, β)− 0.5 . Sample noise
5: si ← s+ ε ∗ ni . Possible adversarial state determined by sampled noise
6: aadv ← argmax

a
Q(si, a) . Determine optimal action in potential adversarial state

7: Qtargetadv ← Qtarget(s, aadv) . Determine the value of potential adversarial action
corresponding to potential adversarial state for current state

8: if Qtargetadv < Q∗ then . if the potential adversarial state leads to bad action
9: Q∗ ← Qtargetadv . Store the value function of that potential bad action

10: sadv ← si . Store possible adversarial state
11: else
12: do nothing
13: end if
14: end for
15: return sadv . Adversarial state
16: end procedure

4.4 Naive attack on DDPG74

The objective function used by adversary in this case is the Q∗critic(s, U(s)) := Q∗(s, U) (U is the75

actor network), that is, the value function determined by the trained critic network. Algorithm for76

naive attack on DDPG has been provided in Algo. 4

Algorithm 4 Naive attack (DDPG)

1: procedure NAIVE(Qtarget, U, s, ε, n, α, β) . Naive attack function takes trained target
critic network Qtarget, trained actor network U , current state(s), adversarial attack magnitude
constraint(ε), parameters of beta distribution(α, β) and number of times to sample noise(n) as
input

2: a∗ ← U (s), Q∗ ← Qtarget(s, a∗) . Determine optimal action and action value function
3: for i = 1 : n do . Sample a few times
4: ni ∼ beta(α, β)− 0.5 . Sample noise
5: si ← s+ ε ∗ ni . Possible adversarial state determined by sampled noise
6: aadv ← U(si) . Determine optimal action in potential adversarial state
7: Qtargetadv ← Qtarget(s, aadv) . Determine the value of potential adversarial action

corresponding to potential adversarial state for current state
8: if Qtargetadv < Q∗ then . if the potential adversarial state leads to bad action
9: Q∗ ← Qtargetadv . Store the value function of that potential bad action

10: sadv ← si . Store possible adversarial state
11: else
12: do nothing
13: end if
14: end for
15: return sadv . Adversarial state
16: end procedure

77

6

Algorithm 5 Training with adversarial perturbation (DDQN)

1: procedure ADV TRAIN (Qtarget, Q) . Gradient based adversarial training method takes
pre-trained network

2: for i = 1 : iterations do . Train adversarially for number of timesteps
3: Reset the environment and receive observation
4: while not terminal or not max time steps per episode reached do
5: sadv ← Grad(Qtarget, Q, s, ε, n, α, β) . Fool the agent
6: a← argmax

a
Q(sadv,a) . Fooled agent takes action according to behavior policy

7: s, r ← Env(a, s) . Environment returns next state and reward corresponding to state
s and action a

8: Update the weights of network according to DDQN algorithm
9: end while

10: end for
11: end procedure

(a) Cart-Pole (b) Mountain Car (c) Hopper (d) Half Cheetah

Figure 1: Different environments in OpenAi gym (MuJoCo for simulation of dynamics)

5 Adversarial Training DDQN78

6 Adversarial Training of DDPG79

The algorithm for adversarial training of DDPG has been provided in Algo. 6.

Algorithm 6 Training with adversarial perturbation (DDPG)

1: procedure ADV TRAIN (Qtarget, Q, U target, U) . Gradient based adversarial training method
takes pre-trained network

2: for i = 1 : iterations do . Train adversarially for number of timesteps
3: Reset the environment and receive observation
4: while not terminal or not max time steps per episode reached do
5: sadv ← Grad(Qtarget, U, s, ε, n, α, β) . Fool the agent
6: a← U(sadv) . Fooled agent takes action according to behavior policy
7: s, r ← Env(a, s) . Environment returns next state and reward corresponding to state
s and action a

8: Update the weights of network according to DDPG algorithm
9: end while

10: end for
11: end procedure

80

7 Experimental Setup81

In this section, we give details of the experimental setup that has been used for results presented in82

the following section. All the experiments have been performed within OpenAi gym environment83

(Fig. 1)84

7

7.1 DDQN85

The Deep Double Q learning for cart pole environment used 3 layers of 16 units each with Rectified86

Linear Unit (ReLu) activation function whereas the mountain car environment used 2 hidden layers of87

100 units each of ReLu activation function. The discount factor for both of them was set at 0.99and88

target network update rate were 10−2. The “supervised learning" of networks was done with Adam89

optimization and learning rate of 10−3. The cartpole environment was trained for 50000 timesteps90

while Mountain Car was trained for 40000 time steps. The repository that we used was Keras-rl ([5]).91

7.2 RBF Q learning92

For Cart-pole, each dimension of state input was divided into 3 bins (b). The centroids were uniformly93

distributed along those bins. The variance of radial activation were 2
b2 . Discount factor of 0.99 was94

used. The learning rate was given by 0.001. It was trained for 40000 time steps For Mountain car95

environment, the learning rate was 0.01 and number of bins were 4. The discount factor was 0.99.96

Total number of timesteps were 60000.97

7.3 DDPG98

For hopper and half cheetah environment, there were 2 hidden layers of 400 and 300 ReLu units for99

both actor and critic networks. For Hopper, the number of time steps it was trained were 1 million,100

discount factor was 0.99. The learning rate of critic network was 10−3 while the learning rate of actor101

was 10−4. Half cheetah also used the same network as hopper. It also had the same learning rate and102

discount factor. It was trained for 2 million time steps. The repository that we used was rllab [1]103

7.4 Adversarial Training104

For adversarial training, the sampling frequency was 200 and the vanilla trained network was re-105

trained adversarially for same amount of time steps. We used adversarial magnitude of 0.05 for half106

cheetah and 0.03 for hopper. The sampling frequency was 100. We must point out that for the results107

shown in paper, comparison has been shown between both vanilla and adversarially trained networks108

that have been trained for exactly same number of timesteps.109

8 Robust Training Colormap for Cartpole110

(a) DDQN Cartpole (b) Robust DDQN Cartpole

Figure 2: Subfigure (a) shows the average return per episode for cart-pole environment using DDQN
algorithm across variation of mass of cart and length of pole. Subfigure(b) shows the same information
for adversarially trained DDQN agent. We can observe significant improvement over the return for
agent across different parameters. “Zoomed" colormap for DDQN cartpole comparison has been
presented.

8

References111

[1] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep112

reinforcement learning for continuous control. In International Conference on Machine Learning,113

pages 1329–1338, 2016.114

[2] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial115

attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.116

[3] Tommi Jaakkola, Michael Jordan, and Satinder Singh. On the convergence of stochastic iterative117

dynamic programming algorithms. Neural Computations, 6(6):1185–1201, 1994.118

[4] David JC MacKay. Information theory, inference and learning algorithms. Cambridge university119

press, 2003.120

[5] Matthias Plappert. keras-rl. https://github.com/matthiasplappert/keras-rl,121

2016.122

9

https://github.com/matthiasplappert/keras-rl

	Proof of Proposition and comment
	Adversarial attacks
	Gradient based Attack DDQN
	Gradient based attack on DDPG
	Naive attack on DDQN
	Naive attack on DDPG

	Adversarial Training DDQN
	Adversarial Training of DDPG
	Experimental Setup
	DDQN
	RBF Q learning
	DDPG
	Adversarial Training

	Robust Training Colormap for Cartpole

