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Structured Interaction Models for Robot Learning in Human Spaces

Robots are becoming increasingly prevalent
in our daily lives. However, these autonomous
agents work best in isolation, such as restricted
areas in warehouses. Enabling these robots to
coexist with humans remains an unsolved chal-
lenge, because subtle and dynamic interactions
among different agents are difficult to infer,
which poses significant challenges for robot
operation. To enable broader deployment of
robots in human spaces, I leverage the un-
derlying structures in interactive scenarios
to improve robot decision-making.

Past and Ongoing Work
My work tackles both implicit human-robot

interactions through motions and explicit inter-
actions through language. I design structured
frameworks that unify human intention predic-
tion, interaction reasoning, and planning.

1) Interaction-aware crowd navigation:
Robot navigation alongside dynamic agents,
including pedestrians and vehicles, is impor-
tant for last-mile delivery and autonomous
driving. Previous works used reinforcement
learning (RL) to learn navigation policies [1,
2, 3]. However, these methods ignore human
future intentions or the interactions among
agents, resulting in shortsighted and impolite
robots [4, 5]. For the first time, I formu-
late the crowd navigation as a heterogeneous
spatio-temporal graph, which captures various
interactions among agents through space and
time [6, 7, 8, 9]. From the graph, I derive
a novel policy network with attention mecha-
nism, enabling the robot to attend to important
humans, such as those nearly colliding with
the robot. To avoid shortsighted behaviors, I
propose an intention-aware RL framework that
allows the robot to avoid the intended paths of
humans [8, 10, 7]. My experiments in robot
navigation tasks among dense pedestrian and
vehicle crowds show that my planner leads
to a safe, longsighted, and social-aware robot.
This finding has inspired follow-up research

in behavior prediction [11, 12] and spatio-
temporal networks [13, 14, 15] for navigation.

2) Language-conditioned interactions: To
fulfill human commands such as “bring me
some water”, the robot must associate hu-
man intentions with the surrounding world.
However, the development of existing visual-
language models is done by engineers. Thus,
it is difficult for non-experts to tailor these
models based on their needs [16]. To bridge
this gap, I propose a visual-audio represen-
tation that is data-efficient and intuitive for
non-experts to fine-tune after the robot is de-
ployed in novel environments [17, 18]. For
robots to fulfill commands, I utilize visual-
audio representations to select goals for plan-
ning [19, 17, 18, 20]. My robots demonstrate
good generalization to novel environments in
multiple public benchmarks and high user sat-
isfaction in user study. My work highlights the
synergies between language understanding and
planning for command-following robots. Fur-
thermore, my pipeline brings end users into the
development loop of visual-language models,
improving the generalization and accessibility
of these models in real-world applications.

Research Agenda
To live in human environments, the robot

must handle various types of interactions si-
multaneously and improve itself continuously.
To this end, my research agenda involves two
directions: 1) Developing a unified interaction
model for both implicit and explicit interac-
tions. Such a structured interaction model can
unlock more robot capabilities, such as yielding
to a human and saying “please go ahead” in
a narrow corridor simultaneously. 2) Lifelong
learning from non-experts. After deployment in
human spaces, robots will be able to collect a
large amount of interaction data. Using these
data, I plan to develop user interfaces and algo-
rithms to allow everyone to train and customize
their robots without too much expertise.
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