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Abstract 

Prostate cancer diagnosis by biopsy images of human tissue requires experienced trained 

pathologists and the cost is high. To facilitate prostate cancer diagnosis, we built and trained 

binary classifiers using deep convolutional neural networks (CNNs) on two datasets: one 

contains cancerous and healthy biopsy images of prostate tissues (referred as Dataset1), and 

the other contains biopsy images of tissues with recurred cancer and fully recovered tissues 

(referred as Dataset2). We extracted patches from biopsy images of human tissues, then built 

and trained CNN models to classify the patches. We achieved 82% test accuracy on Dataset1 

and 63% accuracy on Dataset2.  

In addition, we used ensemble methods to further boost the performance. With predictions of 

all patches in our datasets, we performed majority voting on the image level, and the accuracy 

increases by 5% to 10% on the first dataset. Then we used Bootstrap Aggregation (Bagging) to 

further increase accuracy to 100% on Dataset1. However, the two-step ensemble methods 

above have little influence on the accuracy of Dataset2. When visualizing the predictions on the 

second dataset returned by our models, no clear patterns are found that can distinguish the 

two classes.  
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1. Introduction 

1.1 Motivation and Goals 
Cancer is the second most common cause of death in the United States from 2012 2017. It causes 22.5% 

of total deaths in this period. According to American Cancer Society [1], prostate cancer, the third most 

common cause of death of males in the United States, is reported with 164,690 new cases and 29,430 

deaths in 2018 [1].  

While early detection and diagnosis of prostate cancer often allows for more treatment options and 

increases a person’s chances of survival, detection by professional pathologists, which involves 

examining prostate tissue biopsies, is labor-intensive and error-prone. Moreover, different pathologists 

may have different methods for detection and may have conflicting opinions on the same case. 

Therefore, developing a systematic rule for cancer diagnosis is necessary. Moreover, automating the 

diagnosis process can largely reduce the time and costs, as well as minimize errors.  

For this reason, we used biopsy images of prostate tissue from the US Biomax as our datasets. We used 

a deep learning approach to classify two datasets: the first dataset contains biopsy images of healthy 

and cancerous tissues (referred as Dataset1), and the second dataset contains biopsy images of tissues 

with recurred prostate cancer and fully recovered tissues (referred as Dataset2).  

1.2 Related Work 
Ciresan et al. [2] detected mitosis in breast cancer histology images using deep neural network, which 

classifies patches from images that center on the cell nucleus and yields a probability of the nucleus 

being in the mitosis process. [2] computed the local maximum probability in each image and label these 

areas as mitotic. Liu et al. [3] successfully classified tumor patches and normal patches using multi-scale 

convolutional neural network (CNN) and generated heatmaps for tumorous regions on Camelyon 16 

dataset. However, few previous researchers studied the automatic detection of prostate cancer, which 

leads us to this project. 

Wang [4] trained a 7-layer LeNet to classify our Dataset1 and achieved around 70% accuracy [4]. He also 

proposed that in theory, ensemble methods can boost the performance of CNN models to nearly perfect 

accuracy. Following his discovery, we trained CNN models with better performance based on deeper 

and more modern architectures than LeNet. And we explored the classification of Dataset2 using our 

CNN models and pushed this project forward to a new level. 
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2. Image Preprocessing 
Deep learning requires a large amount of data to learn feature representations with different 

abstractness and achieve high performance. An example of our image data is shown in Figure 1 and 2. 

The number of images in our datasets is limited to several hundreds, and the size of our images is too 

large to be efficiently processed by our CNN models. Moreover, we had severe data imbalance problem 

in Dataset1. For these reasons, we need to sample smaller patches from our image datasets as ideal 

inputs to CNN models, and up-sample the minority classes or down-sample the majority class to solve 

the data imbalance problem. 

 2.1 Sampling the Patches 
The size of tissue biopsy images in our datasets is around 1100 pixel x 1100 pixel. If we directly feed the 

raw images into our CNN models, the training time will be too long due to the large size of the images. 

Also, we need around 10,000 data to train a good CNN binary classifier. Thus, sampling patches from 

original images becomes a feasible and necessary step. As shown in Figures 1 and 2, since we are only 

interested in the red tissue regions, we developed an algorithm to detect the elliptical boundary 

between tissues and white blank areas (Figure 3). Then we randomly sampled patches of size 128 pixel x 

128 pixel within the red ellipse, which served as input to our CNN models. Finally we divided the patches 

into training, validation, and testing subsets with ratios equal to 75 : 15 : 15. Validation data was used to 

tune parameters in the training phase, and testing data was used to test the performance of trained 

CNN models. 

                                                      

Figure 1. Sample images from Dataset1 (Left: biopsy of healthy tissues, Right: biopsy of cancerous tissues) 
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Figure 2. Sample images from Dataset2 (Left: biopsy of recovered tissues, Right: biopsy of tissues with recurred cancer) 

 

 

Figure 3. An illustration of our image processing steps 

 

2.2 Upsampling and Downsampling 
Due to the difficulty of obtaining biomedical data and thus limited data resource, we faced severe data 

imbalance problem in Dataset1 that contains 112 images in benign class and 409 images in cancerous 

class. Dataset2 is only slightly imbalanced and the ratio of recovered class to recurred class is 7:6. The 

data imbalance has a negative effect on CNN models since the majority class would dominate the 

training process, thus the model loses the chance to sufficiently learn the features of minority class and 

it tends to predict testing data as majority class. To solve this problem, we adjust the number of patches 

we sample from the majority class and the minority class to ensure that the total number of patches is 

roughly the same in the two classes.  
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3. Convolutional Neural Network 
Convolutional neural network (CNN) is made up of multiple layers to learning image features with 

multiple levels of abstraction [5]; also, sequences of convolutional – batch normalization – activation 

layers in CNN allow it to learn features invariant to various image transformations. Because CNN is the 

most powerful tool in deep learning, and it has led to numerous breakthroughs in fields related to 

machine learning, we chose this architecture to build our classifier.  

3.1 Architectures 
We primarily used ResNet to train our datasets. ResNet has residual blocks with shortcut connections 

that are easier to optimize and can gain accuracy from considerably increasing depth [6]. As shown in 

Figure 4, each residual unit can be expressed as: 

𝑦𝑙 = ℎ(𝑥𝑙) + ℱ(𝑥𝑙 ,𝒲𝑙), 

𝑥𝑙+1 = 𝑓(𝑦𝑙) 

where 𝑥𝑙 and 𝑥𝑙+1 are input and output of the 𝑙-th unit, ℱ is a residual function, and ℎ(𝑥𝑙) = 𝑥𝑙 is an 

identity mapping and 𝑓 is a ReLU activation function. Soon afterwards, [7] came up with an updated 

version of residual blocks with pre-activation structures that lead to better performance (see Figure 5), 

which can be expressed as: 

𝑥𝑙+1 = 𝑥𝑙 + ℱ(𝑥𝑙 ,𝒲𝑙). 

since 𝑓 is also an identity mapping in this case. Let 𝐿 denote the loss function of ResNet, then the 

backpropagation of the equation above can be expressed as 

𝜕𝐿

𝜕𝑥𝑙
=

𝜕𝐿

𝜕ℱ(𝑥𝑙 ,𝒲𝑙)

𝜕ℱ(𝑥𝑙 ,𝒲𝑙)

𝜕𝑥
=

𝜕𝐿

𝜕ℱ(𝑥𝑙 ,𝒲𝑙)
(1 +

𝜕ℱ(𝑥𝑙 ,𝒲𝑙)

𝜕𝑥𝑙
) 

The term 
𝜕𝐿

𝜕ℱ(𝑥𝑙,𝒲𝑙)
 ensures that the gradient can be propagated to any of the previous units. But our 

experiments showed that the newer ResNet had almost the same accuracy as the original ResNet in 

both of our datasets. Since our dataset size and number of classes are much smaller than the dataset in 

[6], we found that ResNet18 with half of its layers is sufficient without compromising the performance. 

The testing result on Dataset1 is 82% accuracy.  

 

Figure 4. A residual block in ResNet [6] 
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Figure 5. (a) Original residual block; (b) New residual block proposed by He et al. [7] 

We explored ResNet, VGG Net, and Inception-v3 in Dataset2, all of which are previous winners of 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC). VGG Net is much deeper than LeNet and 

therefore allows for more levels of feature representation. Inception-v3 has auxiliary units that ensures 

fast convergence and reduces gradient vanishing problem [8]. For the same reason as Dataset1 above, 

we used smaller versions of these CNNs. We find that ResNet not only achieved best accuracy, but also 

needs shortest training time due to its smallest number of parameters among the three. Therefore, the 

rest of our experiments are done on ResNet models. 

Table 1. Comparison of 3 different CNN architectures trained on Dataset2 

CNN architecture ResNet9 VGG13 Inception-v3 (5 blocks) 

Number of parameters 4,000,000 138,000,000 50,000,000 

Training time (based on 
Amazon EC2 g3.4xlarge 
instance) 

3.5 hours 18 hours 24 hours 

Accuracy 63% 51% 59% 

 

3.2 Overfitting Issue 
As our learning curves shown in Figure 6 and Figure 7, we got 100% training accuracy on both datasets, 

and 82% testing accuracy on Dataset1 and 62% accuracy on Dataset2. Large gap between training and 

testing performance indicated an overfitting problem in our models, especially for Dataset2.  
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Figure 6. Learning curves of ResNet on Dataset1 (Left: Accuracy v.s. Epoch; Right: Loss v.s. Epoch) 

 

 

Figure 7. Learning curves of ResNet on Dataset2 (Left: Accuracy versus Epoch; Right: Loss versus Epoch) 

To reduce overfitting, we tried the following three methods: (1) Increasing the size of the dataset; (2) 

adding dropout layers; and (3) reducing the number of layers in CNN models to decrease variance. We 

will discuss each of these methods one by one. 

After we obtained more images, extracted patches from them, and merged the new patches with 

Dataset2, we trained the CNN model on the enlarged dataset but obtain the same result as the original 

smaller Dataset2.  

As, shown in Figure 7, dropout addresses the overfitting problem by randomly removing a unit 

temporarily from the network with probability 𝑝 [9]. In this way, the trained model acts as a 

combination of many different models, which usually improves the performance.  
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Figure 8. Dropout neural network model. Left: A standard neural network with 2 hidden layers; Right: An example of a 
thinned net produced by applying dropout to the NN on the left. [9] 

We trained models with different dropout probabilities from 0 (no dropout) to 0.8, and as Figure 9 

shows, accuracy constantly drops as dropout probability increases. Therefore, adding dropout layers 

does not improve the performance of our models. 

 

Figure 9. Accuracy v.s. Dropout magnitude on ResNet with 1 residual unit 

In machine learning, variance is defined as an error from sensitivity to small fluctuations in the training 

data, and high variance can cause a model to fit noise data and lead to overfitting [10]. To reduce 

variance in our models, we experimented with ResNet from 4 residual units (i.e. ResNet18) to 0 residual 

units with only input layer and fully-connected layer at output. The accuracy versus number of residual 

units is plotted in Figure 10:  
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Figure 10. Accuracy v.s. number of residual units in ResNet 

From Figure 10, it is obvious that smaller networks only reduce accuracy. It is due to the limit of feature 

representation of different abstractness in very reduced number of convolutional layers. Therefore, 

none of the three proposed methods was effective in solving the overfitting problem, which is still 

haunting us now. 
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4. Ensemble Methods 
Ensemble methods use multiple learning algorithms to obtain better predictive performance than single 

learning algorithms [11]. In the first step of our ensemble method, we used the labels of patches from 

the same image to vote for a label for the image. In the second step, we performed Bootstrap 

Aggregating to give predictions by combining those of multiple CNN models. Both steps gave effective 

improvements on Dataset1, but did not have much effect on Dataset2. 

4.1 Majority Voting: From Patches to Images 
After we obtained labels of all patches from our CNN classifiers, we aggregated the patches from the 

same image and give the image a single label using majority voting. Remember that we randomly 

extracted 100 patches from each image. For any image in our datasets, suppose 𝑚 patches are labeled 

as “positive” and (100 −𝑚) patches are labeled as “negative”, then the image is labeled as “positive” if 

𝑚 > 50; otherwise it is labeled as “negative”. An illustration of this process is shown below in Figure 11. 

 

Figure 11. A simplified example of majority voting process (1 stands for "positive", 0 stands for "negative") 

From Figure 13, the green bars indicate that accuracy in Dataset1 increases for 4% to 16% after Majority 

Voting.  

4.2 Bootstrap Aggregating 
Bootstrap aggregating, or bagging, is an ensemble algorithm that combines multiple algorithms and 

gives collective outputs by averaging the outputs of all algorithms (commonly used in regression) or 

voting (commonly used in classification) [12]. It also reduces variance and helps to avoid overfitting. 

With image-wise predictions given by majority voting, we applied voting again among our models 

trained by different hyperparameters such as learning rate, number of convolution layers, and 

regularization magnitude, and give collective predictions to images. As shown in Figure 13 and 14, 

bagging increased accuracy for another 2% to 3% in Dataset1 but had [13] no obvious effect on 

Dataset2. 
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Figure 12. Accuracies of single CNN model (red), Majority Voting (green), and bagging (blue) on training, validation and 
testing data in Dataset1 

 

 

Figure 13. Accuracies of single CNN model (red), Majority Voting (green), and bagging (blue) on training, validation and 
testing data in Dataset2 
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5. Conclusions 
Both our CNN models and ensemble methods achieved strong performance on classification of 

cancer/benign biopsy images in Dataset1. Our final accuracy is 100%, which indicates that CNN is 

capable of detecting key features of different abstractness that can distinguish between cancer tissues 

and healthy tissues.  

However, the overfitting problem on Dataset2 is inconclusive despite attempts of three methods 

mentioned above. We hypothesize that the reason is the ambiguous nature of cancer recurrence 

diagnosis. As non-experts, we cannot find any strong visual clue that can distinguish the two classes in 

Dataset2. Since our CNN models have no expert knowledge either, it may converge to and get stuck at a 

local maximum while misses a far better global maximum. We believe that insights from pathologists 

may allow us to give prior knowledge to guide our CNN to converge to a better result. 
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6. Future Work 
Our models are only focused on classification of prostate cancer datasets. It would be interesting to 

explore the performance of CNN models on other biological datasets, such as other human cancers or 

tissue of other animals.  

Another interesting task is object detection and segmentation on prostate cancer datasets. It would be 

very useful in practice if we could locate the cancerous tissues and segment them from the rest of the 

neighborhood.  
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