Interplay between Multiagent Games and Generative Adversarial Imitation Learning

> Shuijing Liu 10/12/2019

The paper I'm reading today is called

Under review as a conference paper at ICLR 2020

ASYNCHRONOUS MULTI-AGENT GENERATIVE AD-VERSARIAL IMITATION LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Imitation learning aims to inversely learn a policy from expert demonstrations, which has been extensively studied in the literature for both single-agent setting with Markov decision process (MDP) model, and multi-agent setting with Markov game (MG) model. However, existing approaches for general multi-agent Markov games are not applicable to multi-agent *extensive* Markov games, where agents make asynchronous decisions following a certain order, rather than simultaneous decisions. We propose a novel framework for asynchronous multi-agent generative adversarial imitation learning (AMAGAIL) under general extensive Markov game settings, and the learned expert policies are proven to guarantee subgame perfect equilibrium (SPE), a more general and stronger equilibrium than Nash equilibrium (NE). The experiment results demonstrate that compared to state-of-the-art baselines, our AMAGAIL model can better infer the policy of each expert agent using their demonstration data collected from asynchronous decision-making scenarios (i.e., extensive Markov games).

Roadmap

What is Generative Adversarial Imitation Learning (GAIL) Multiagent GAIL (MAGAIL):

Extend GAIL to multi-agent Markov Games (MG) Asynchronous MAGAIL (AMAGAIL):

Extend MAGAIL to asynchronous MG, aka EMG

Generative Adversarial Imitation Learning (GAIL)

Remember our old friend GAN...

- We have two models in GAN:
 - A generative model G that mimics the real data distribution
 - A **discriminative model D** that estimates the probability that a sample *x* came from real data rather than *G*
 - D(x) is the probability that input x came from real data: $x \sim p_{real}(x)$
 - Similarly, 1 D(x) is the probability that x came from fake data by $G: x \sim p_G(x)$
- We train G and D simultaneously so that
 - D maximizes the probability of assigning correct labels to real data and samples from G
 - G "confuses" D by minimizing this probability
- Formally speaking, *D* and *G* play the minimax game with loss function E(D,G): $\min_{G} \max_{D} E(D,G) = \mathbb{E}_{x \sim p_{real}(x)}[logD(x)] + E_{x \sim p_G(x)}[log(1 - D(x))]$

Goodfellow, Ian, et al. "Generative Adversarial Nets." *Advances in neural information processing systems*. 2014.

Use the similar spirit in Imitation Learning...

- In Imitation learning, we are trying to learn a policy π_{θ} from an expert π_{E}
 - the "real data" becomes state-action pairs (s, a) sampled from π_E
 - the "fake data" becomes (s, a) sampled from our policy π_{θ} (or G)

While Discriminator *D* tries to distinguishes them!

(17)

• Continue our minimax game in GAIL:

Algorithm 1 Generative adversarial imitation learning

1: Input: Expert trajectories $\tau_E \sim \pi_E$, initial policy and discriminator parameters θ_0, w_0

2: for
$$i = 0, 1, 2, \dots$$
 do

3: Sample trajectories
$$\tau_i \sim \pi_{\theta_i}$$

4: Update the discriminator parameters from w_i to w_{i+1} with the gradient –

$$\hat{\mathbb{E}}_{\tau_i}[\nabla_w \log(D_w(s, a))] + \hat{\mathbb{E}}_{\tau_E}[\nabla_w \log(1 - D_w(s, a))]$$

Train D_w to classify whether state-action pairs (s, a) are sampled from π_E or π_{θ}

5: Take a policy step from
$$\theta_i$$
 to θ_{i+1} , using the TRPO rule with cost function $\log(D_{w_{i+1}}(s, a))$.
Specifically, take a KL-constrained natural gradient step with
 $\hat{\mathbb{E}}_{\tau_i} [\nabla_{\theta} \log \pi_{\theta}(a|s)Q(s,a)] - \lambda \nabla_{\theta} H(\pi_{\theta}),$
(18)
Train π_{θ} with TRPO while maximizing entropy to fool D_w

where
$$Q(\bar{s}, \bar{a}) = \hat{\mathbb{E}}_{\tau_i}[\log(D_{w_{i+1}}(s, a)) | s_0 = \bar{s}, a_0 = \bar{a}]$$

6: **end for**

Ho, Jonathan, and Stefano Ermon. "Generative adversarial imitation learning." Advances in neural information processing systems. 2016.

Q: Wait... But how to generalize GAIL to Multiagent Games?

A: Song et al. proposed Multi-Agent Generative Adversarial Imitation Learning (MAGAIL) in 2018!

But before we talk about MAGAIL...

Markov Game (MG)

	Single-agent MDP	Multi-agent MG with $m{n}$ players
State Space	$s_t \in S$	$\boldsymbol{s_t} = (s_1, \dots, s_n) \in S^n$
Action Space	$a_t \in A$	A_1 ,, A_n
Transition Function	$T: S \times A \times S \rightarrow [0, 1]$	$T: S \times A_1 \times \cdots \times A_n \times S \to [0, 1]$
Reward Function	$R: S \times A \to \mathbb{R}$	For each agent $i, R_i: S \times A_1 \times \cdots \times A_n \rightarrow \mathbb{R}$
Policy	$\pi: S \to A$	For each agent i: $\pi_i: S^n \to A_i$
Discount Factor	$0 \le \gamma < 1$	$0 \le \gamma < 1$
Initial State Distribution	$p(s_0) \sim \eta$	$p(s_0) \sim \eta$
Objective function	$\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}, a_{t}) s_{0} \sim \eta, a_{t} \sim \pi(s_{t})\right]$	Each agent <i>i</i> maximizes its own reward: $\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{i}(\boldsymbol{s_{t}}, \boldsymbol{a_{i,t}}) \boldsymbol{s_{0}} \sim \boldsymbol{\eta}, \boldsymbol{a_{i,t}} \sim \pi_{i}(\boldsymbol{s_{t}})\right]$

Multi-Agent GAIL

MAGAIL is just GAIL with many D and G

- For each agent *i*, we need a discriminator D_{w_i} and a policy π_i
- So in each iteration, the D_{w_i} and generator π_i update steps become:

for u = 0, 1, 2, ... do Obtain trajectories of size B from π by the process: $s_0 \sim \eta(s), a_t \sim \pi_{\theta_u}(a_t|s_t), s_{t+1} \sim$ $T(s_t|a_t).$ Train each D_{w_i} to Sample state-action pairs from \mathcal{D} with batch size B. Denote state-action pairs from π and \mathcal{D} as χ and χ_E . classify whether for i = 1, ..., n do state-action pairs Update ω_i to increase the objective (*s*, *a*) are sampled $\mathbb{E}_{\chi}[\log D_{\omega_i}(s, a_i)] + \mathbb{E}_{\chi_E}[\log(1 - D_{\omega_i}(s, a_i))]$ from π_E or π_{θ_i} end for for i = 1, ..., n do Compute value estimate V^* and advantage estimate A_i for $(s, a) \in \chi$. Update ϕ_i to decrease the objective Train each π_{θ_i} with $\mathbb{E}_{\nu}[(V_{\phi}(s, a_{-i}) - V^{\star}(s, a_{-i}))^2]$ **TRPO** while maximizing entropy Update θ_i by policy gradient with small step sizes: to fool D_{w_i} $\mathbb{E}_{\gamma}[\nabla_{\theta_i}\pi_{\theta_i}(a_i|o_i)A_i(s,a)]$

Song, Jiaming, et al. "Multi-agent generative adversarial imitation learning." *Advances in Neural Information Processing Systems*. 2018.

end for end for

Wait... If n is large, we'll end up with too many *D*s and *G*s!

• We can draw relations between D_1, \dots, D_n for different types of MG:

Song, Jiaming, et al. "Multi-agent generative adversarial imitation learning." *Advances in Neural Information Processing Systems*. 2018.

Extensive Markov Games (EFG)

EMG: an asynchronous extension of MG

- In Markov games (MG), n agents make simultaneous decisions at each timestep, with policies only depending on the current state s_t
- In Extensive Markov games (EMG) (or Extensive form games (EFG) in the paper), n agents make asynchronous decisions, with policies conditioned on the entire history of the game

	MG with n players	EMG with <i>n</i> players
State Space	$\boldsymbol{s_t} = (s_1, \dots, s_n) \in S^n$	$\boldsymbol{s_t} = (s_1, \dots, s_n) \in S^n$
Action Space	A_1 ,, A_n	$A_1' = A_1 \cup \{\phi\}, \dots, A_n' = A_n \cup \{\phi\}$, where ϕ denotes no participation
Participation Vector	None	$I_t = [I_{1,t},, I_{N,t}]$ indicates active vs inactive agents at time t $h_{t-1} = [I_0,, I_{t-1}]$ is the participation history from time 0 to $t - 1$
Player function	None	$Y(i h_{t-1})$ describes the probability of agent i to make an action at time t, given the participation history h_{t-1}
Transition Function	$T: S \times A_1 \times \dots \times A_n \times S \to [0, 1]$	$T: S \times A_1 \cup \{\phi\} \times \dots \times A_n \cup \{\phi\} \times S \to [0, 1]$
Reward Function	For each agent $i, R_i: S \times A_1 \times \cdots \times A_n \rightarrow \mathbb{R}$	For each agent $i, R_i: S \times A_1 \times \cdots \times A_n \to \mathbb{R}$
Policy	For each agent i: $\pi_i: S^n \to A_i$	For each agent i: $\pi_i: S^n \to A_i \cup \{\phi\}$
Discount Factor	$0 \le \gamma < 1$	$0 \le \gamma < 1$
Initial State Distribution	р(s ₀)~ η	$p(s_0) \sim \eta$
Objective function	Each agent <i>i</i> maximizes its own reward: $\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{i}(\boldsymbol{s_{t}}, \boldsymbol{a_{i,t}}) \boldsymbol{s_{0}} \sim \boldsymbol{\eta}, \boldsymbol{a_{i,t}} \sim \pi_{i}(\boldsymbol{s_{t}})\right]$	Each agent <i>i</i> maximizes its own reward: $\mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} R_{i}(\mathbf{s_{t}}, a_{i,t}) \mathbf{s_{0}} \sim \boldsymbol{\eta}, a_{i,t} \sim \pi_{i}(\mathbf{s_{t}})\right]$

Asynchronous MAGAIL

AMAGAIL algorithm is nearly identical to MAGAIL

for u = 0, 1, 2, ... do

Generate state-action pairs of batch size B from π_u through the process: $s_0 \sim \eta(s)$, $I_0 \sim \zeta$, $I_t \sim Y$, $a \sim \pi^*(\cdot|s_t)$, $s_{t+1} \sim P(s_{t+1}|s_t, a)$; denote the generated state-action pairs as \mathcal{X} .

Sample state-action pairs from \mathcal{Z} of batch size B; denote the demonstrated state-action pairs as \mathcal{X}_E . for i = 1,...,N do Update w_i to increase the objective $\mathbb{E}_{\mathcal{X}}[\log D_{w_i}(s, a_i)] + \mathbb{E}_{\mathcal{X}_E}[\log(1 - D_{w_i}(s, a_i))]$ end for for i = 1,...,N do Compute value estimate V^* and advantage estimate A_i for $(s, a) \in \mathcal{X}$. Update ϕ_i to decrease the objective $\mathbb{E}_{\mathcal{X}}[(V_{\phi}(s, a_{-i}) - V^*(s, a_{-i}))^2]$ Update θ_i by policy gradient with the setting step sizes: $\mathbb{E}_{\mathcal{X}}[\nabla_{\theta_i} \pi_{\theta_i}(a_i|s_i)A_i(s, a)]$ end for end for

Anonymous. "Multi-agent generative adversarial imitation learning." In submission to International Conference on Learning Representations, ICLR 2020.

AMAGAIL with 3 different participation rules

(a) Synchronous participation

(b) Deterministic participation

The player function $Y(i|h_{t-1}) = 1$ for all agents at all timesteps, in which case EMG becomes MG.

All agents take turns to make actions with a fixed order. (c) Stochastic participation

All agents have stochastic player functions (yellow boxes)

Anonymous. "Multi-agent generative adversarial imitation learning." In submission to International Conference on Learning Representations, ICLR 2020.

That's it! Thank you!