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I. INTRODUCTION

Robots are becoming increasingly capable of performing
tasks in isolation. However, how to operate them in human
environments remains an open challenge. Subtle and highly
dynamic interactions among different agents are prevalent in
human environments. These interactions are difficult to infer,
which poses significant challenges for robot planning. To
enable autonomous navigation in human environments,
I propose methods that rely on structured interaction
models to facilitate robot decision making. By uncovering
the structures beneath the interactive behaviors of agents, I aim
to build better robots that share living spaces with humans.

Two types of interactions exist while robots navigate
among humans: Implicit interactions through motions (e.g.,
two agents yielding to each other when crossing a corridor)
and explicit interactions through communication (e.g., speech,
text, interfaces). To smoothly achieve tasks with both types
of human-robot interactions, robots need to predict human
intentions, reason about interactions, and plan to achieve
the task goal. To this end, I propose navigation systems
with structured interaction frameworks, achieving synergies
between interaction modeling and decision making.

Implicit interactions: Robot navigation with other dynamic
agents, such as moving crowds and busy intersections, is
an important yet challenging problem. In crowded spaces,
dynamic agents implicitly interact and negotiate with each
other. The intended goal of agents are not observable to the
robot, which poses extra difficulties for crowd navigation.
Previous works have used model-based methods or reinforce-
ment learning (RL) for navigation policies [21, 8, 5, 7, 11].
However, these works suffer from two drawbacks: 1) The robot
does not explicitly predict human intentions during planning,
which results in shortsighted and impolite behaviors [20, 10];
2) Different types of interactions among agents through space
and time are (partially) ignored by planners, which causes per-
formance degradation in dense crowds and highly interactive
scenarios [6, 15].

Explicit interactions: Audio is a natural and intuitive way
for robots to communicate with humans. There is a spur of
work that enables robots to follow human commands by taking
advantage of language models [1, 9, 19]. However, in these
works, the design of robot systems is not tailored toward
the needs of target users, which limits their applications and

societal impact. In addition, when deployed in new domains,
existing pipelines for command following robots are difficult
or inefficient to finetune [4].

Contributions: In response to the aforementioned chal-
lenges, I propose the following research contributions: (1) To
encourage the robot to be aware of human intentions during
navigation, I incorporate the predictions of agent behaviors
into RL planners for robots. As a result, my intention aware RL
framework learns safer and socially-aware navigation policies.
(2) To model heterogeneous spatial and temporal interactions
among agents, I propose policy network architectures that
model interactive scenarios as graphs. The graph decomposi-
tion ensures better scalability in complex multiagent scenarios.
(3) For robots to fulfill language commands, I propose methods
that incorporate visual-language representations into the robot
navigation modules. My methods show promising deployment
and continual improvement with non-expert users.

II. PAST AND ONGOING RESEARCH

A. Intention aware robot navigation with interaction graphs

1) Intention aware RL [15, 14]: I propose an intention
aware RL framework that incorporates predictions of human
future intentions into planning, which leads to longsighted
robot trajectories. The human intentions include the future
trajectories and individual traits, such as aggressiveness. Given
any off-the-shelf human trajectory predictor or trait predictor,
we introduce the predicted information into the robot observa-
tion space and adjust the reward function accordingly. In RL
training, the predictor takes past human trajectories as input
and predicts human intentions. The output predictions are used
as part of robot observations, which are fed to the robot policy
network. Additionally, in [15], we design a reward function
that encourages the robot to keep away from both current
and intended positions of observed humans, improving both
safety and politeness of the robot. We conducted extensive ex-
periments in robot crowd navigation and autonomous driving
tasks. The results show that intention-aware RL leads to safer
and more polite robot policies. This finding demonstrates the
high correlation between prediction and planning to achieve
proactive robot behaviors in human spaces. We also illustrate
the importance of modifying the RL formulation for robotic
reinforcement learning on real world problems.



2) Graph strucutres in policy networks [13, 15, 14]:
We propose a heterogeneous spatio-temporal graph (st-graph),
which captures different types of interactions among agents
through both space and time. Based on the st-graph, we
derive a novel neural network to learn navigation policies,
which consists of two components as follows. We use attention
networks to represent spatial interactions among agents at the
same timestep. The attention networks enable the robot to
pay more attention to important agents, which ensures good
performance when the number of humans increases and the
graph becomes complex. We use recurrent neural networks to
represent the temporal interactions, which model the dynamic
evolution of the navigation scenarios. The recurrent networks
enables temporal reasoning, which is useful in modeling
highly dynamic crowds or traffic. By training the network that
consists of spatial and temporal components, the robot learns
a safer policy compared with methods that consider partial
or no interactions. In addition, we successfully transfer the
policy to real world robot navigation among pedestrains. This
result demonstrates the power of injecting graph structures
into neural networks. By doing so, complex problems can be
decomposed into smaller components which become easier to
solve.

B. Visual audio grounding for command following robots

1) Visual audio representation learning [3, 4]: To com-
municate with humans via dialogue, the robot must be able
to associate audio commands with visual observations and
motor skills. We propose a novel framework that uses visual-
audio representation (VAR) as RL reward for skill learning.
The image and audio came from cheap raw sensor inputs
without expensive hardware for state measurements. More
specifically, we train VAR with contrastive learning using
paired audio and image data. The data pairs are fed to audio
and image processing branches, where the encoded vectors that
have the same meaning are pulled closer to each other in the
representation space (e.x. An audio clip of “Turn on the TV”
and an image of a TV turned on). Unlike other visual-language
representations that need speech recognizers to handle speech,
VAR directly interprets raw sound signals, which alleviates
the intermediate errors caused by speech-to-text. In addition,
VAR generalizes well to different sounds including speech,
environmental sound, and music. Our work highlights the
importance of multi-modal representations, which serve as
building blocks for smooth human-robot communication.

2) Planning with representations [2, 3, 16]: We incorporate
visual language or visual audio representations into robot
planners so that the robot can take actions to fulfill user
commands. More specifically, after receiving a user command,
the trained representations compute similarity scores between
the command and image observations from the environment.
Then, the similarity scores can guide the robot to approach
states where the image observation matches the command
with the highest scores. After deployment in everyday en-
vironments, non-experts can easily improve the planner by
finetuning the representations with a few amount of visual

language pairs (Sec. II-B), ensuring the reslience and ro-
bustness of our end-to-end systems in novel environments.
This representation-aided planning method is compatible with
both RL planners and conventional search-based planners. We
demonstrate our method in various robotic tasks, including
assistive navigation for blind people and embodied navigation.
Our systems demonstrate good generalization performance
and high user satisfaction. Our work highlights the synergies
between visual-language grounding and planning for com-
mand following robots, calling for the co-design of these
components. Furthermore, our results are the first to show that
grounding and dialogue enhances human-robot interactions
through user study with real users.

III. FUTURE WORK

For robots to serve humans in all types of scenarios, we
need to iterate between training the robot and deploying it in
real human environments. To facilitate this training and de-
ployment loop, my research agenda involves three directions:
1) Developing a unified model for both implicit and explicit in-
teractions to unlock more robot capabilities; 2) Learning social
behaviors from foundational models to improve the finetuning
efficiency during deployment; 3) Developing intuitive lifelong
learning methods from non-expert humans.

Unified interaction models: For robots to collaborate with
humans on tasks such as preparing a meal, they must interact
with humans both implicitly and explicitly. For this reason, I
aim to expand the spatio-temporal interaction graph to capture
interactions beyond movement, such as motions, dialogue,
gaze, and so on. However, as we expand the graph, we must
consider computational constraints and better understand the
important factors in different interaction settings. To achieve
this, inspired by the successful adaptation of st-graph in
complex prediction tasks [12], I plan to design st-graphs with
edges that encode various types of interactions.

Interaction learning from foundational models: My pre-
vious works train predictors and planners using a separate
dataset or simulator for each task. However, this “tabula rasa”
paradigm can be data inefficient. The trained models also have
limited generalization across different tasks [17]. On the other
hand, large language models (LLMs) encompass common
sense knowledge such as social norms [18]. To improve the
data efficiency and generalization of my method, I plan to
incorporate visual language foundation models into the inten-
tion predictor and robot planner. The proposed approach takes
observed video frames and task-specific prompts as inputs and
outputs human intentions or robot motion primitives. Since my
previous framework makes minimal assumptions on the form
of submodules, it has promising compatibility for LLMs.

Intuitive finetuning from non-experts: When a trained
robot is deployed in everyday environments, its performance
drops inevitably due to domain shifts. Ideally, we need data-
efficient and intuitive fine-tuning algorithms that allow non-
experts with little domain expertise to customize and improve
the robot. Building on my previous work on planning with
representations [3], I aim to propose 1) intuitive user interfaces



for non-experts to provide finetuning data from their own
devices, such as phone cameras and microphones, and from
direct physical teleoperation; 2) data-efficient algorithms for
robot to self-improve with minimal data collected from non-
experts [4, 22]. With an intuitive and data-efficient finetuning
mechanism, the robot can continually improve itself in target
environments and customize toward user preferences.
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